| 摘要: |
| 本文研究黎奇梯度孤立子的分类问题. 利用与文献[11]类似的方法, 在Bach张量等于零的条件下, 对于n ≥ 5, 证明了流形是Einstein的或者Weyl曲率张量是调和的. |
| 关键词: 黎奇梯度孤立子 Bach张量 Weyl曲率张量 |
| DOI: |
| 分类号:O186.12 |
| 基金项目:Supported by National Natural Science Foundation of China (11371018;11171368) |
|
| THE CLASSIFICATION OF GRADIENT RICCI ALMOST SOLITONS |
|
ZENG Fan-qi, MA Bing-qing
|
|
Department of Mathematics, Henan Normal University, Xinxiang 453007, China
|
| Abstract: |
| We study the classification of a gradient Ricci almost soliton. Using similar methods as in [11] for n ≥ 5, we obtain that the Weyl curvature tensor is harmonic or Einstein under the assumption that the Bach tensor is flat. |
| Key words: gradient Ricci almost solitons Bach tensor Weyl curvature tensor |