数学杂志  2016, Vol. 36 Issue (2): 267-276   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
ZHANG Zhong-xiang
GAO Ming-feng
INTEGRAL REPRESENTATIONS FOR BI-REGULAR FUNCTIONS AND HARMONIC FUNCTIONS OVER PLANE IN CLIFFORD ANALYSIS
ZHANG Zhong-xiang, GAO Ming-feng     
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Abstract: In this article, we study the integral representations over hyper-complex plane П for bi-regular functions and harmonic functions with values in a Clifford algebra. By constructing the kernel functions, we give the integral representation formulas over hyper-complex plane П for bi-regular functions and harmonic functions with values in a Clifford algebra. These results are extensions of integral representations over hyper-complex plane П for regular functions.
Key words: Clifford algebra     integral representation     bi-regular function     harmonic function    
Clifiord分析中双正则函数及调和函数在平面上的积分表示
张忠祥, 高明凤     
武汉大学数学与统计学院, 湖北 武汉 430072
摘要:本文研究了取值在Clifiord代数上双正则函数及调和函数在超复平面上积分表示的问题.利用构造核函数的方法, 获得了双正则函数及调和函数在超复平面上的积分表示公式, 这些结果推广了Clifiord分析中正则函数在超复平面上的积分表示公式.
关键词Clifiord代数    积分表示    双正则函数    调和函数    
1 Introduction

Integral representation formulas are very powerful tools for solving boundary value problems in Clifford analysis. In [1-15, 18-27] etc., a great deal of work about integral representation formulas and boundary value problems in Clifford analysis was well presented. In[16-17], classical theories of boundary value problems and singular integral equations were systematically built.

However, most of the work about integral representation formulas was built over bounded domains. Naturally, developing integral representation formulas over unbounded domains is important and interesting, it will serve to study the Riemann-Hilbert boundary value problems for k-regular functions over unbounded domains in Clifford analysis. Similar to Cauchy type integrals over the real axis in classical complex analysis, Cauchy type integrals over the plane in Clifford analysis framework are also valuable. In [8], Cauchy transform and Hilbert transform over $\mathcal{R}$m were introduced; In [12-13]etc., by constructing the new Cauchy kernel function, some integral representation formulas over unbounded domains and its applications were shown. In [27], Cauchy type integral and singular integral over hyper-complex plane Ⅱ in the hyper-complex space RQ3 were studied by using a special Möbius transform, integral representation formulas over hyper-complex plane Ⅱ for regular functions were built.

In this paper, combining the idea in [9] with the technique in [12-13], we construct the kernel functions, and then give the integral representations over hyper-complex plane Ⅱ for bi-regular functions and harmonic functions with values in a Clifford algebra.

Let $V_n,0$ be an n-dimensional ($(n\geq 1)$) real linear space with basis $\{e_1, e_2,\cdots,e_n\}$, $C(V_{n,0})$ be the $2^n$--dimensional real linear space with basis

$ \left\{ e_A, A=\{h_1,\cdots, h_r\}\in \mathcal{P}N, 1\leq h_1<\cdots<h_r \leq n \right\}, $

where N stands for the set $\{1,\cdots, n \}$ and $\mathcal{P}N$ denotes the family of all order-preserving subsets of N in the above way. we denote $e_{\emptyset}$ as $e_0$ and $e_A$ as $e_{h_1\cdots h_r}$ for $A=\{h_1,\cdots,h_r\}\in \mathcal{P}N$. The product on $C(V_{n,0})$ is defined by

$\left\{ \begin{array}{l} {e_A}{e_B} = {( - 1)^{\# (A \cap B)}}{( - 1)^{P(A,B)}}{e_{A\Delta B}},{\rm{if}},B \in {\cal P}N,\\ \lambda \mu = \sum\limits_{A \in {\cal P}N} {\sum\limits_{B \in {\cal P}N} {{\lambda _A}} } {\mu _B}{e_A}{e_B},{\rm{if}}\;\lambda = \sum\limits_{A \in {\cal P}N} {{\lambda _A}} {e_A},\mu = \sum\limits_{B \in {\cal P}N} {{\mu _B}{e_B},} \end{array} \right.$ (1.1)

where $\#(A)$ is the cardinal number of the set A, the number $P(A,B)=\sum\limits_{j\in B}P(A,j)$, $P(A,j)=\#\{i, i\in A, i>j\}$, the symmetric difference set $A\triangle B$ is also order-preserving in the above way, and $ \lambda_{A} \in \mathcal{R}$ is the coefficient of the $e_A$-component of the Clifford number $\lambda$. We also denote $\lambda_0$ as ${\rm Re}(\lambda)$. Thus $C(V_{n,0})$ is called the Clifford algebra over $V_{n,0}$.

An involution is defined by

$\left\{ {_{\bar \lambda = \sum\limits_{A \in \mathcal{P}N} {_{{\lambda _A}}\overline {{e_A}} } {\rm{,if}}{\mkern 1mu} {\mkern 1mu} \lambda = \sum\limits_{A \in \mathcal{P}N} {{\lambda _A}{e_A}} ,}^{\overline {{e_A}} = {{( - 1)}^{\sigma (A)}}{e_A},{\rm{if}}{\mkern 1mu} {\mkern 1mu} A \in \mathcal{P}N,}} \right.$ (1.2)

where $\sigma (A)=\#(A)(\#(A)+1)/2$. The $C\left(V_{n.0}\right)$-valued n-differential form

$ {\rm d}\sigma= \sum\limits_{k=0}^{n}(-1)^{k}e_k{\rm d} \widehat{x}^{N+1}_{k},\,\,\,\overline{\rm d\sigma}= \sum\limits_{k=0}^{n}(-1)^{k}\overline{e_k}{\rm d} \widehat{x}^{N+1}_{k} $

are exact, where

$ {\rm d}\widehat{x}^{N+1}_{k}= {\rm d}x_0\wedge\cdots\wedge{\rm d}x_{k-1} \wedge{\rm d}x_{k+1}\wedge\cdots\wedge{\rm d}x_n. $

In this paper, we confine n=2. The real linear space with basis $\{e_0, e_1, e_2\}$ is a subspace of $C(V_{2,0}))$, which is called the reduced quaternions and denoted by $RQ_3$. The operator D which is written as

$D=\sum\limits_{k=0}^2e_k\dfrac{\partial}{\partial\!x_k}:\, C^{(r)}(\Omega,C(V_{2,0}))\rightarrow C^{(r-1)}(\Omega,C(V_{2,0})). $
2 Some Definitions and Lemmas

Let $R{Q_3} = \left\{ {x = {x_0} + {x_1}{e_1} + {x_2}{e_2}:{x_0},{x_1},{x_2} \in \mathcal{R}} \right\}$, then $RQ_3$ is identical with the usual Euclidean space$\mathcal{R}$ 3. Denote $\Pi=\left\{{\rm{x}}\in RQ_3| {x}_0=0\right\}$, $RQ_3^ + = \left\{ {{\rm{x}} \in R{Q_3}|{\rm{Re}}({\rm{x}})<0} \right\}$, $RQ_3^ - = \left\{ {{\rm{x}} \in R{Q_3}|{\rm{Re}}({\rm{x}})<0} \right\}$, $\partial B({\rm{x}},r) = \left\{ {{\rm{y}} \in R{Q_3}||y - {\rm{x}}| = r} \right\}$, then Ⅱ and $\partial B(0, 1)$ are the plane and unit sphere in hyper-complex space $RQ_3$ respectively. Denote $D(0,R) = \left\{ {{\rm{x}} \in \Pi ||\ {\rm{x}}|<R} \right\}$.

Definition 2.1 Denote $f\in \widehat{H}^{\mu}(\Pi, C(V_{2,0}))$ if $f$ is $\widehat{H}$ in $\Pi$. $f$ is called $\widehat{H}$ in $\Pi$ if $f$ satisfies the following conditions: (i) $\left| {f({\rm{x}} - f({\rm{x}}^*)} \right|{\rm{ }} \le {M_1}{\left| {{\rm{x}} - {\rm{x}}^*} \right|^\mu }$$\forall{ {\rm{x}}},{ {\rm{x}}}^*\in \overline{D(0, R_1)}$, where $R_1$ is any given sufficiently great constant, $M_1$ is independent of $\ {\rm{x}},{\rm{x}}^*$, $M_1$ depends on $R_1$, $0<\mu\leq 1$. (ii) $ | f({\rm{x}}-f({\rm{x}}^*)|\leq M_2 \left |\dfrac{1}{\ {\rm{x}}}-\dfrac{1}{\ {\rm{x}}^*}\right |^{\mu}$$\forall{ {\rm{x}}},{ {\rm{x}}}^*\in \Pi\setminus D(0, R_2)$, where $R_2$ is any given sufficiently great constant, $M_2$ is independent of $\ {\rm{x}},{\rm{x}}^*$, $M_2$ depends on $R_2$, $0<\mu\leq 1$.

Remark 2.1 $\forall{ {\rm{x}}},{ {\rm{x}}}^*\in \overline{D(0, R_2)}\setminus D(0, R_1)$, $|f({\rm{x}}-f({{{\rm{x}}}^{*}})|\le {{M}_{1}}|{\rm{x}}-{{{\rm{x}}}^{*}}{{|}^{\mu }}$ is equivalent to $| f({\rm{x}}-f({\rm{x}}^*) | \le {M_2} |{{\rm{x}}}-{{\rm{x}}^*}|{|^\mu }$, where $M_1$ and $M_2$ are given constants.

Remark 2.2 By Definition 2.1, if $f\in \widehat{H}^{\mu}(\Pi, C(V_{2,0}))$, then $\mathop {\lim }\limits_{\left| X \right| \to \infty } {\mkern 1mu} f({\rm{x}})$ exists, denote $\mathop {\lim }\limits_{\left| X \right| \to \infty } {\mkern 1mu} f({\rm{x}}) = f(\infty )$ and

$\left| {f({\rm{x}}) - f(\infty )} \right|{\rm{ }} \le \frac{{{M_2}}}{{{{\left| {\rm{x}} \right|}^\mu }}},{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall {\rm{x}} \in \Pi \setminus D(0,{R_2}).$ (2.1)

Deflnition 2.2 Denote $f\in \widehat{H}_0^{\mu}(\Pi, C(V_{2,0}))$ if $f$ is $\widehat{H}_0$ in $\Pi$. $f$ is called $\widehat{H}_0$ in $\Pi$ if $f$ satisfies the following conditions: (i) $f\in \widehat{H}^{\mu}(\Pi, C(V_{2,0}))$; (ii) $f(\infty)=0$.

Deflnition 2.3 A function $f\in C^(r)(\Omega, C(V_{2, 0})) (r\geq 2)$ is called bi-regular in $\Omega$ if $D^2[f]=0$ in $\Omega$, which is also called 2-regular in $\Omega$; A function $f\in C^{(r)}(\Omega, C(V_{2, 0})) (r\geq 2)$ is called harmonic in $\Omega$ if $\triangle [f]=0$ in $\Omega$, where $\triangle$ is the Laplace operator.

Denote ${H_1}({\rm{y}} - {\rm{x}}) = \frac{1}{{4\pi }}\frac{{\bar {\rm{y}} - \bar {\rm{x}}}}{{{{\left| {{\rm{y}} - {\rm{x}}} \right|}^3}}}$, $H_1^*({\rm{y}} - {\rm{x}}) = \frac{1}{{4\pi }}\frac{{\bar {\rm{y}} - \overline {{S_\Pi }({\rm{x}})} }}{{{\rm{y}} - {S_\Pi }({\rm{x}}){|^3}}} = \frac{1}{{4\pi }}\frac{{\bar {\rm{y}} + {\rm{x}}}}{{|{\rm{y}} + \bar {\rm{x}}{|^3}}}$, where $S_{\Pi}({\rm{x}})=-\overline{{\rm{x}}}$, $S_{\Pi}({\rm{x}})$ is just the symmetric point of ${\rm{x}}$ with respect to $\Pi$, $y \ne {\rm{x}}$. Denote $E_1({\rm{y}}-{\rm{x}})=H_1({\rm{y}}-{\rm{x}})-H_1^*({\rm{y}}-{\rm{x}})$, $H_2({\rm{y}}-{\rm{x}})=H_1({\rm{y}}-{\rm{x}})\cdot (y_0-x_0)$, $H_2^*({\rm{y}}-{\rm{x}})=H_1^*({\rm{y}}-{\rm{x}})\cdot (y_0-x_0)$, $E_2({\rm{y}}-{\rm{x}})=E_1({\rm{y}}-{\rm{x}})\cdot (y_0-x_0)$.

Lemma 2.1 Let $H_1({\rm{y}}- {\rm{x}})$, $H_2({\rm{y}}- {\rm{x}})$, $H_1^*({\rm{y}}- {\rm{x}})$ and $H_2^*({\rm{y}}- {\rm{x}})$ be as above, then

$\left\{ {_{_{[H_2^*({\rm{y}} - {\rm{x}})]{D^2} = [H_1^*({\rm{y}} - {\rm{x}})]D = 0,}^{[{H_2}({\rm{y}} - {\rm{x}})]{D^2} = [{H_1}({\rm{y}} - {\rm{x}})]D = 0,}}^{_{{D^2}[H_2^*({\rm{y}} - {\rm{x}})] = D[H_1^*({\rm{y}} - {\rm{x}})] = 0,}^{{D^2}[{H_2}({\rm{y}} - {\rm{x}})] = D[{H_1}({\rm{y}} - {\rm{x}})] = 0,}}} \right. $

where $D=\sum\limits_{k=0}^2e_k\dfrac{\partial}{\partial\!y_k}$.

Lemma 2.2 Let $E_1({\rm{y}}-{\rm{x}})$ and $E_2({\rm{y}}- {\rm{x}})$ be as above, then

$ \left\{ {_{[{E_2}({\rm{y}} - {\rm{x}})]{D^2} = [{E_1}({\rm{y}} - {\rm{x}})]D = 0,{\rm{ }}}^{{D^2}[{E_2}({\rm{y}} - {\rm{x}})] = D[{E_1}({\rm{y}} - {\rm{x}})] = 0,}} \right.$

where $D=\sum\limits_{k=0}^2e_k\dfrac{\partial}{\partial\!y_k}$.

Denote $K({\rm{y}}- {\rm{x}})=-\dfrac{1}{4\pi}\dfrac{1}{\rho ({\rm{y}}- {\rm{x}})}$, $G({\rm{y}}- {\rm{x}}) =-\dfrac{1}{4\pi}\left (\dfrac{1}{\rho ({\rm{y}}- {\rm{x}})}-\dfrac{1}{\rho ({\rm{y}}+\overline{{\rm{x}}})}\right )$, where $\rho ({\rm{y}}- {\rm{x}})=\left (\sum\limits^2_{k=0}(y_k-x_k)^2\right )^{\frac{1}{2}}$.

Lemma 2.3 Let $K({\rm{y}}-{\rm{x}})$ be as above, then

$\left\{ {\begin{array}{*{20}{l}} {\bar D[K({\rm{y}} - {\rm{x}})] = [K({\rm{y}} - {\rm{x}})]\bar D = {H_1}({\rm{y}} - {\rm{x}}),}\\ {D[K({\rm{y}} - {\rm{x}})] = [K({\rm{y}} - {\rm{x}})]D = \overline {{H_1}} ({\rm{y}} - {\rm{x}}),} \end{array}} \right.$

where $D=\sum\limits_{k=0}^2e_k\dfrac{\partial}{\partial\!y_k}$.

Lemma 2.4 Let $G({\rm{y}}-{\rm{x}})$ be as above, then

$\left\{ \begin{array}{l} \bar D[G({\rm{y}} - {\rm{x}})] = [G({\rm{y}} - {\rm{x}})]\bar D = {E_1}({\rm{y}} - {\rm{x}}),\\ D[G({\rm{y}} - {\rm{x}})] = [G({\rm{y}} - {\rm{x}})]D = \overline {{E_1}} ({\rm{y}} - {\rm{x}}), \end{array} \right.$

where $D=\sum\limits_{k=0}^2e_k\dfrac{\partial}{\partial\!y_k}$.

Lemma 2.5 Let $E_1({\rm{y}}-{\rm{x}})$ be as above, then

$|{E_1}({\rm{y}} - {\rm{x}})| \le \frac{{|{x_0}|}}{{2\pi }}\left( {\frac{2}{{|{\rm{y}} - {\rm{x}}{|^3}}} + \frac{1}{{|{\rm{y}} - {\rm{x}}{|^2}|{\rm{y}} + \bar {\rm{x}}|}} + \frac{1}{{|{\rm{y}} - {\rm{x}}||{\rm{y}} + \bar {\rm{x}}{|^2}}}} \right).$ (2.2)

Lemma 2.6 Let $f\in C^{(2)}(\Omega, C(V_{2, 0}))C^{(1)}(\overline{\Omega}, C(V_{2,0})) $and $ D^2[f]=0$in $\Omega$, where $ \Omega $is a bounded domain with smooth boundary inRQ3, then for any$ {\rm{x}}\notin \overline{\Omega} $,

$\int\limits_{\partial \Omega } {{H_1}} ({\rm{y - {\rm{x}}}}){\rm{d}}{\sigma _{\rm{y}}}f({\rm{y}}){\rm{ - }}\int\limits_{\partial \Omega } {{H_{\rm{2}}}} ({\rm{y - {\rm{x}}}}){\rm{d}}{\sigma _{\rm{y}}}D[f]({\rm{y}}){\rm{ = 0}}.$ (2.3)

Proof By Lemma 2.1 and Stokes' formula (see [5]), the result follows.

Lemma 2.7 (see [9]) Let $f\in C^{(2)}(\Omega, C(V_{2, 0})) C^{(1)}(\overline{\Omega}, C(V_{2,0}))$ and $D^2[f]=0 in \Omega $, where $\Omega $is a bounded domain with smooth boundary in RQ3, then for any ${\rm{x}}\in \Omega$,

$f({\rm{x}}) = \int\limits_{\partial \Omega } {{H_1}} ({\rm{y}} - {\rm{x}}){\rm{d}}{\sigma _{\rm{y}}}f({\rm{y}}){\rm{ - }}\int\limits_{\partial \Omega } {{H_{\rm{2}}}} ({\rm{{\rm{y}} - {\rm{x}}}}){\rm{d}}{\sigma _{\rm{y}}}D[f]({\rm{y}}).$ (2.4)

Lemma 2.8 Let $f\in C^{(2)}(\Omega, C(V_{2, 0})) \bigcap C^{(1)}(\overline{\Omega}, C(V_{2,0})) $ and $ \triangle [f]=0 $in $\Omega$, where $\Omega$is a bounded domain with smooth boundary in RQ3, then for any${\rm{x}}\notin \overline{\Omega}$

$\int\limits_{\partial \Omega } {{H_1}} ({\rm{y}} - {\rm{x}}){\rm{d}}{\sigma _{\rm{y}}}f({\rm{y}}){\rm{ - }}\int\limits_{\partial \Omega } K ({\rm{y - {\rm{x}}}}){\overline {{\rm{d}}\sigma } _{\rm{y}}}D[f]({\rm{y}}){\rm{ = 0}}.$ (2.5)

Proof By Lemma 2.1, Lemma 2.3 and Stokes' formula, the result follows.

Lemma 2.9 Let $f\in C^{(2)}(\Omega, C(V_{2, 0}))\bigcap C^{(1)}(\overline{\Omega}, C(V_{2,0})) $and $\triangle [f]=0 $in $ \Omega $, where $\Omega $is a bounded domain with smooth boundary in RQ3, then for any${\rm{x}}\notin \overline{\Omega}$

$\int\limits_{\partial \Omega } {\overline {{H_1}} } ({\rm{y}} - {\rm{x}}){\overline {d\sigma } _y}f({\rm{y}}) - \int\limits_{\partial \Omega } K ({\rm{y}} - {\rm{x}}){\rm{d}}{\sigma _{\rm{y}}}\bar D[f]({\rm{y}}){\rm{ = 0}}.$ (2.6)

Proof By Lemma 2.1, Lemma 2.3 and Stokes' formula, the result follows.

Lemma 2.10 Let $f\in C^{(2)}(\Omega, C(V_{2, 0})) \bigcap C^{(1)}(\overline{\Omega}, C(V_{2,0}))$and $\triangle [f]=0$in$ \Omega $, where$ \Omega $is a bounded domain with smooth boundary in RQ3, then for any$ {\rm{x}}\in \Omega $,

$f({\rm{x}})) = \int\limits_{\partial \Omega } {{H_1}} ({\rm{y}} - {\rm{x}}){\rm{d}}{\sigma _{\rm{y}}}f({\rm{y}}){\rm{ - }}\int\limits_{\partial \Omega } K ({\rm{y - {\rm{x}}}}){\overline {d\sigma } _{\rm{y}}}D[f]({\rm{y}}).$ (2.7)

Proof By Lemma 2.8, it can be similarly proved as in Lemma 2.7.

Lemma 2.11 Let $f\in C^{(2)}(\Omega, C(V_{2, 0})) \bigcap C^{(1)}(\overline{\Omega}, C(V_{2,0}))$and $ \triangle [f]=0 $in$ \Omega $, where $ \Omega $is a bounded domain with smooth boundary inRQ3, then for any${\rm{x}}\in \Omega $,

$f({\rm{x}}) = \int\limits_{\partial \Omega } {\overline {{H_1}} } ({\rm{y}} - {\rm{x}}){\overline {d\sigma } _y}f({\rm{y}}) - \int\limits_{\partial \Omega } K ({\rm{y}} - {\rm{x}}){\rm{d}}{\sigma _{\rm{y}}}{\rm{\bar D}}[f]({\rm{y}}).$ (2.8)

Proof By Lemma 2.9, it can be similarly proved as in Lemma 2.7.

Lemma 2.12 (see [27]) Let $f\in \widehat{H}^{\mu}(\Pi, C(V_{2,0}))$, then for all ${\rm{y}}_*,{{\rm{y}}}_{**}\in \Pi$,

$\mathop {\lim }\limits_{R \to + \infty } \left( {\frac{1}{{4\pi }}\int \int\limits_{D({{\bf{y}}_*},R)} {\frac{{\overline {\bf{y}} - \overline {\bf{{\rm{x}}}} }}{{|{\bf{y}} - {\bf{{\rm{x}}}}{|^3}}}} f({\bf{y}}){\rm{d}}S - \frac{1}{{4\pi }}\int \int\limits_{D({{\bf{y}}_{**}},R)} {\frac{{\overline {\bf{y}} - \overline {\bf{{\rm{x}}}} }}{{|{\bf{y}} - {\bf{{\rm{x}}}}{|^3}}}} f({\bf{y}}){\rm{d}}S} \right) = 0,$ (2.9)

where ${\rm{x}}\in RQ_3.$.

3 Integral Representations over Ⅱ for Bi-regular Functions

In this section, we shall give the integral representations over $\Pi$ for bi-regular functions. For $f({\rm{x}})\in \widehat{H}^{\mu}(\Pi, C(V_{2,0}))$, the Cauchy type integral Cf over $\Pi$ is defined by

$Cf({\rm{x}}) = - \frac{1}{{4\pi }}\int {} \int\limits_\Pi {\frac{{\bar {\rm{y}} - \bar {\rm{x}}}}{{|{\rm{y}} - {\rm{x}}{|^3}}}f({\rm{y}})dS,{\rm{x}} \notin \Pi ,} $ (3.1)

where

$- \frac{1}{{4\pi }}\int {} \int\limits_\Pi {} \frac{{\bar {\rm{y}} - \bar {\rm{x}}}}{{{{\left| {{\rm{y}} - {\rm{x}}} \right|}^3}}}f({\rm{y}})dS = \mathop {\lim }\limits_{R \to + \infty } - \frac{1}{{4\pi }}\int {} \int\limits_{D(0,R)} {} \frac{{\bar {\rm{y}} - \bar {\rm{x}}}}{{{{\left| {{\rm{y}} - {\rm{x}}} \right|}^3}}}f({\rm{y}})dS.$ (3.2)

Lemma 3.13 (see [27]) Let $f({\rm{y}})\in \widehat{H}^{\mu}(\Pi, C(V_{2,0}))$, $Cf({\rm{x}})$ be defined as in (3.1), then $Cf({\rm{x}})$ exists and

$Cf({\rm{x}}) = \left\{ {_{ - \frac{{f(\infty )}}{2} - \frac{1}{{4\pi }}\int {} \int\limits_\Pi {} \frac{{\bar {\rm{y}} - \bar {\rm{x}}}}{{|{\rm{y}} - {\rm{x}}{|^3}}}(f({\rm{y}}) - f(\infty ))dS,{\rm{x}} \in RQ_3^ - .{\rm{ }}}^{\frac{{f(\infty )}}{2} - \frac{1}{{4\pi }}\int {} \int\limits_\Pi {} \bar - \frac{{\bar {\rm{y}} - \bar {\rm{x}}}}{{|{\rm{y}} - {\rm{x}}{|^3}}}(f({\rm{y}}) - f(\infty ))dS,{\rm{x}} \in RQ_3^ + ,}} \right.$ (3.3)

Theorem 3.1 Let $f\in C^{(2)}(\Omega, C(V_{2, 0})) \bigcap C^{(1)}(\overline{\Omega}, C(V_{2,0}))$ and$ D^2[f]=0 $in$ \Omega $, where$ \Omega $is a bounded domain with smooth boundary in RQ3, then for any$ {\rm{x}}\in \Omega $,

$f({\rm{x}})=\displaystyle\int\limits_{\partial\Omega}E_1({\rm{y}}- {\rm{x}})d\sigma_yf({\rm{y}})- \displaystyle\int\limits_{\partial\Omega}E_2({\rm{y}}- {\rm{x}}) d\sigma_yD[f]({\rm{y}}).$ (3.4)

Proof By Lemma 2.2, Lemma 2.7 and Stokes' formula, the result follows.

Denote ${\partial ^ + }B({\rm{x}},R) = {\rm{ }}\{ {\rm{y}}|{\rm{y}} \in \partial B({\rm{x}},R),{\mkern 1mu} {\rm{Re}}({\rm{y}}) > 0{\rm{\} }}$.

Lemma 3.14 For any ${\rm{x}}\in RQ^+_3$,

$\mathop {\lim }\limits_{R \to + \infty } \int\limits_{{\partial ^ + }({\rm{x}},R)} {} {H_1}({\rm{y}} - {\rm{x}})d{\sigma _y} = \mathop {\lim }\limits_{R \to + \infty } \int\limits_{{\partial ^ + }B({\rm{x}},R)} {} H_1^*({\rm{y}} - {\rm{x}})d{\sigma _y} = \frac{1}{2}.$ (3.5)

Proof It can be proved by Lemma 2.5.

Lemma 3.15 Let $f\in \widehat{H}^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$, then for any ${\rm{x}}\in RQ^+_3$,

$\mathop {\lim }\limits_{R \to + \infty } \int\limits_{{\partial ^ + }B({\rm{x}},R)} {} {H_1}({\rm{y}} - {\rm{x}})d{\sigma _y}f({\rm{y}}) = \mathop {\lim }\limits_{R \to + \infty } \smallint \int\limits_{{\partial ^ + }({\rm{x}},R)} {} H^*_1({\rm{y}} - {\rm{x}}){\sigma _y}f({\rm{y}}) = \frac{1}{2}f(\infty ).$ (3.6)

Proof It can be proved by Lemma 3.14.

Lemma 3.16 Let $D[f]\in \widehat{H}_0^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$, then for any ${\rm{x}}\in RQ^+_3$,

$\mathop {\lim }\limits_{R \to + \infty } \int\limits_{{\partial ^ + }B({\rm{x}},R)} {} {E_2}({\rm{y}} - {\rm{x}})d{\sigma _y}D[f]({\rm{y}}) = 0.$ (3.7)

Proof It can be proved by Lemma 2.5.

Lemma 3.17 Let $f\in \widehat{H}^{\mu}(\Pi, C(V_{2,0}))$, then for all $y_*,{ y}_{**}\in \Pi$,

$\mathop {\lim }\limits_{R \to + \infty } \left( {{\mkern 1mu} \int {} \int\limits_{D({{\rm{y}}_*},R)} {} {E_2}({\rm{y}} - {\rm{x}})f({\rm{y}}){\rm{dS}} - \int\limits_{D({{\rm{y}}_{**}},R)} {} {E_2}({\rm{y}} - {\rm{x}})f({\rm{y}}){\rm{dS}}} \right){\rm{ = 0}},$ (3.8)

where ${\rm{x}}\in RQ_3.$

Proof By Lemma 2.5, it can be similarly proved as in Lemma 2.12.

Theorem 3.2 Let $f\in C^{(1)}(\overline{RQ^+_3}, C(V_{2,0}))\bigcap C^{(2)}(RQ^+_3, C(V_{2,0}))$, $f\in \widehat{H}^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$, $D[f]\in \widehat{H}_0^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$ and $D^2[f]=0$ in $RQ^+_3$, then for any ${\rm{x}}\in RQ^+_3$,

$f({\rm{x}})=-\int{{}}\int\limits_{\Pi }{{{E}_{1}}}({\rm{y}}-{\rm{x}})f({\rm{y}})dS+\int{{}}\int\limits_{\Pi }{{{E}_{2}}}({\rm{y}}-{\rm{x}})D[f]({\rm{y}})dS.$ (3.9)

Proof For any ${\rm{x}}\in RQ^+_3$, denote $\Omega=B( {\rm{x}}, R)\bigcap RQ^+_3$, by Theorem 3.1, we have

$f({\rm{x}})=\displaystyle\int\limits_{\partial\Omega}E_1({\rm{y}}- {\rm{x}}) d\sigma_yf({\rm{y}})- \displaystyle\int\limits_{\partial\Omega}E_2({\rm{y}}- {\rm{x}})d\sigma_yD[f]({\rm{y}}).$ (3.10)

By Lemma 2.12 and Lemma 3.15, it can be proved that

$\lim\limits_{R\rightarrow +\infty}\displaystyle\int\limits_{\partial\Omega}E_1({\rm{y}}- {\rm{x}})d\sigma_yf({\rm{y}})= -\displaystyle\int\displaystyle\int\limits_{\Pi}E_1({\rm{y}}- {\rm{x}}) f({\rm{y}})dS.$ (3.11)

In view of

$\int\limits_{\partial \Omega }{{{E}_{2}}}({\rm{y}}-{\rm{x}})d{{\sigma }_{y}}D[f]({\rm{y}}) \\ =\int\limits_{{{\partial }^{+}}B({\rm{x}},R)}{{{E}_{2}}({\rm{y}}-{\rm{x}})d{{\sigma }_{y}}D[f]({\rm{y}})-\int{{}}\int\limits_{D({\rm{Imx}},\sqrt{{{R}^{2}}-x_{0}^{2}})}{{}}}{{E}_{2}}({\rm{y}}-{\rm{x}}D[f]({\rm{y}})dS,$ (3.12)

where ${ {\rm{Imx}}}=x_1e_1+x_2e_2$. By Lemma 3.17, in view of $D[f]\in \widehat{H}_0^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$, we have

$\underset{R\to +\infty }{\mathop{\lim \limits}}\,\int\int\limits_{D({\rm{Imx}},\sqrt{{{R}^{2}}-x_{0}^{2}})}{{}}{{E}_{2}}({\rm{y}}-{\rm{x}})D[f]({\rm{y}}){\rm{d}}S=\int{{}}\int\limits_{\Pi }{{{E}_{2}}}({\rm{y}}-{\rm{x}})D[f]({\rm{y}}){\rm{d}}S.$ (3.13)

By Lemma 3.16, Combining (3.12) with (3.13), we have

$\lim\limits_{R\rightarrow +\infty}\displaystyle\int\limits_{\partial\Omega}E_2({\rm{y}}- {\rm{x}})d\sigma_yD[f]({\rm{y}})= -\displaystyle\int\displaystyle\int\limits_{\Pi}E_2({\rm{y}}- {\rm{x}}) D[f]({\rm{y}})dS.$ (3.14)

Combining (3.10), (3.11) with (3.14), taking $R\rightarrow +\infty$ in (3.10), the result follows.

4 Integral Representations over Ⅱ for Harmonic Functions

In this section, we shall give the integral representations over Ⅱ for harmonic functions. Denote ${{K}^{*}}({\rm{y}}-{\rm{x}})=-\frac{1}{4\pi }\frac{1}{\rho ({\rm{y}}-{{S}_{\Pi }}({\rm{x}}))}=-\frac{1}{4\pi }\frac{1}{\rho ({\rm{y}}+\bar{{\rm{x}}})}$.

Theorem 4.3 Let$f\in C^{(2)}(\Omega, C(V_{2, 0})) \bigcap C^{(1)}(\overline{\Omega}, C(V_{2,0}))$ and $ \triangle [f]=0 $in$ \Omega $, where$ \Omega $is a bounded domain with smooth boundary in$ RQ^+_3 $, then for any${\rm{x}}\in \Omega $,

$ f({\rm{x}})=\int\limits_{\partial \Omega }{{{E}_{1}}}({\rm{y}}-{\rm{x}})\text{d}{{\sigma }_{\text{y}}}f(\text{y})\text{-}\int\limits_{\partial \Omega }G({\rm{y}}-{\rm{x}}){{\overline{d\sigma }}_{\text{y}}}D[f](\text{y}).$ (4.1)

Proof By Stokes' formula and Lemma 2.3, for any $ {\rm{x}}\in \Omega$, we have

$\int\limits_{\partial \Omega } {H_1^*} ({\rm{y}} - {\rm{x}}){\rm{d}}{\sigma _{\rm{y}}}f({\rm{y}}){\rm{0}}\int\limits_{\partial \Omega } {{K^{\rm{*}}}} ({\rm{y}} - {\rm{x}}){\overline {d\sigma } _{\rm{y}}}D[f]({\rm{y}}){\rm{ = 0}}.$ (4.2)

Combining Lemma 2.10 with (4.2), the result follows.

Theorem 4.4 Let $f\in C^{(2)}(\Omega, C(V_{2, 0})) \bigcap C^{(1)}(\overline{\Omega}, C(V_{2,0})) $ and$ \triangle [f]=0 $in$ \Omega $, where$ \Omega $is a bounded domain with smooth boundary in$ RQ^+_3 $, then for any${\rm{x}}\in \Omega$,

$f({\rm{x}})=\int\limits_{\partial \Omega }{\overline{{{E}_{1}}}}({\rm{y}}-{\rm{x}}){{\overline{d\sigma }}_{y}}f({\rm{y}})-\int\limits_{\partial \Omega }{G}({\rm{y}}-{\rm{x}})\text{d}{{\sigma }_{\text{y}}}D[f](\text{y}).$ (4.3)

Proof By Stokes' formula and Lemma 2.3, for any ${\rm{x}}\in \Omega$, we have

$\int\limits_{\partial \Omega }{\overline{H_{1}^{*}}}({\rm{y}}-{\rm{x}}){{\overline{d\sigma }}_{y}}f({\rm{y}})-\int\limits_{\partial \Omega }{{{K}^{*}}}({\rm{y}}-{\rm{x}})\text{d}{{\sigma }_{\text{y}}}D[f](\text{y})\text{=0}$ (4.4)

Combining Lemma 2.11 with (4.4), the result follows.

Lemma 4.18 Let $f\in \widehat{H}^{\mu}(\Pi, C(V_{2,0}))$, then for all $y_*,{ y}_{**}\in \Pi$,

$\mathop {\lim }\limits_{R \to + \infty } {\mkern 1mu} {\mkern 1mu} \left( {{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \int {\int\limits_{D({{\rm{y}}_{\rm{*}}},{\rm{R}})} {} } G({\rm{y}} - {\rm{x}})f({\rm{y}}){\rm{dS - }}\int {} \int\limits_{D({{\rm{y}}_{{\rm{**}}}},{\rm{R}})} {} {\rm{G}}({\rm{y - {\rm{x}}}})f({\rm{y}}){\rm{dS}}} \right){\rm{ = 0}},$ (4.5)

where ${\rm{x}}\in RQ_3.$

Proof It can be similarly proved as in Lemma 2.12.

Theorem 4.5 Let $f\in C^{(1)}(\overline{RQ^+_3}, C(V_{2,0}))\bigcap C^{(2)}(RQ^+_3, C(V_{2,0}))$, $f\in \widehat{H}^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$, $D[f]\in \widehat{H}_0^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$ and $\triangle [f]=0$ in $RQ^+_3$, then for any ${\rm{x}}\in RQ^+_3$,

$f({\rm{x}}) = - \int {} \int\limits_\Pi {{E_1}} ({\rm{y}} - {\rm{x}})f({\rm{y}}){\rm{dS + }}\int {} \int\limits_\Pi {\rm{G}} ({\rm{y - {\rm{x}}}})D[f]({\rm{y}}){\rm{dS}}.$ (4.6)

Proof For any ${\rm{x}}\in RQ^+_3$, denote $\Omega=B({\rm{x}}, R)\bigcap RQ^+_3$, by Theorem 4.3, we have

$f({\rm{x}})=\displaystyle\int\limits_{\partial\Omega}E_1({\rm{y}}- {\rm{x}})d\sigma_yf({\rm{y}})- \displaystyle\int\limits_{\partial\Omega}G({\rm{y}}- {\rm{x}})\overline{d\sigma_y}D[f]({\rm{y}}).$ (4.7)

By Lemma 2.12 and Lemma 3.15, it can be proved that

$\mathop {\lim }\limits_{R \to + \infty } \int\limits_{\partial \Omega } {{E_1}} ({\rm{y}} - {\rm{x}})d{\sigma _y}f({\rm{y}}) = - \int {} \int\limits_\Pi {{E_1}} ({\rm{y}} - {\rm{x}})f({\rm{y}})dS.$ (4.8)

In view of

$\int\limits_{\partial \Omega } G ({\rm{y}} - {\rm{x}})\overline {d{\sigma _y}} D[f]({\rm{y}})\\ = \smallint \int\limits_{{\partial ^ + }B({\rm{x}},R)} {} G({\rm{y}} - {\rm{x}})\overline {d{\sigma _y}} D[f]({\rm{y}}) - \int {\int\limits_{D({\rm{Imx}},\sqrt {{R^2} - x_0^2} )} {} } G({\rm{y}} - {\rm{x}})D[f]({\rm{y}})dS,$ (4.9)

where ${\rm{Imx}}=x_1e_1+x_2e_2$. In view of $D[f]\in \widehat{H}_0^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$, it can be proved that

$\mathop {\lim }\limits_{R \to + \infty } \int\limits_{{\partial ^ + }B({\rm{x}},R)} {} G({\rm{y}} - {\rm{x}})\overline {d{\sigma _y}} D[f]({\rm{y}}) = 0.$ (4.10)

By Lemma 4.18, in view of $D[f]\in \widehat{H}_0^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$, we have

$\lim\limits_{R\rightarrow +\infty}\displaystyle\int\hspace{-13mm}\displaystyle\int\limits_{D({\rm{Imx}}, \sqrt{R^2-x_0^2})}G({\rm{y}}- {\rm{x}}) D[f]({\rm{y}})dS=\displaystyle\int\displaystyle\int\limits_{\Pi}G({\rm{y}}- {\rm{x}}) D[f]({\rm{y}})dS $ (4.11)

Combining (4.9), (4.10) with (4.11), we have

$\lim\limits_{R\rightarrow +\infty}\displaystyle\int\limits_{\partial\Omega}G({\rm{y}}- {\rm{x}})\overline{d\sigma_y}D[f]({\rm{y}})= -\displaystyle\int\displaystyle\int\limits_{\Pi}G({\rm{y}}- {\rm{x}}) D[f]({\rm{y}}) dS. $ (4.12)

Combining (4.7), (4.8) with (4.12), taking $R\rightarrow +\infty$ in (4.7), the result follows.

Corollary 4.1 Let $f\in C^{(1)}(\overline{RQ^+_3}, C(V_{2,0}))\bigcap C^{(2)}(RQ^+_3, C(V_{2,0}))$, $f\in \widehat{H}^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$ and $D[f]=0$ in $RQ^+_3$, then for any $ {\rm{x}}\in RQ^+_3$,

$f( {\rm{x}})=-\displaystyle\int\displaystyle\int\limits_{\Pi}E_1({\rm{y}}- {\rm{x}}) f({\rm{y}})dS.$ (4.13)

Theorem 4.6 Let $f\in C^{(1)}(\overline{RQ^+_3}, C(V_{2,0}))\bigcap C^{(2)}(RQ^+_3, C(V_{2,0}))$, $f\in \widehat{H}^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$, $\overline{D}[f]\in \widehat{H}_0^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$ and $\triangle [f]=0$ in $RQ^+_3$, then for any ${\rm{x}}\in RQ^+_3$,

$f({\rm{x}})=-\displaystyle\int\displaystyle\int\limits_{\Pi}\overline{E_1}({\rm{y}}- {\rm{x}}) f({\rm{y}})dS+\displaystyle\int\displaystyle\int\limits_{\Pi}G({\rm{y}}- {\rm{x}}) \overline{D}[f]({\rm{y}}) dS.$ (4.14)

Proof By Theorem 4.4, it can be similarly proved as in Theorem 4.5.

Corollary 4.2 Let $f\in C^{(1)}(\overline{RQ^+_3}, C(V_{2,0}))\bigcap C^{(2)}(RQ^+_3, C(V_{2,0}))$, $f\in \widehat{H}^{\mu}(\overline{RQ^+_3}, C(V_{2,0}))$ and $\overline{D}[f]=0$ in $RQ^+_3$, then for any ${\rm{x}}\in RQ^+_3$,

$f({\rm{x}})=-\displaystyle\int\displaystyle\int\limits_{\Pi}\overline{E_1}({\rm{y}}- {\rm{x}}) f({\rm{y}})dS.$ (4.15)
References
[1] Begehr H. Iterations of Pompeiu operators[J]. Mem. Difi. Eq. Math. Phys., 1997, 12(1): 3–21.
[2] Begehr H. Iterated integral operators in Clifiord analysis[J]. J. Anal. Appl., 1999, 18(2): 361–377.
[3] Begehr H. Representation formulas in Clifiord analysis[A]. Acoustics, mechanics and the related topics of mathematical analysis[C]. Singapore: World Sci. Publ. , 2002: 8-13.
[4] Begehr H, Zhang Zhong xiang, Du Jinyuan. On Cauchy-Pompeiu formula for functions with values in a universal Clifiord algebra[J]. Acta Math. Sci., 2003, 23B(1): 95–103.
[5] Brack F, Delanghe R, Sommen F. Clifiord Analysis[M]. Research Notes Math. 76, London: Pitman Books Ltd, 1982.
[6] Delanghe R. On regular analytic functions with values in a Clifiord algebra[J]. Math. Ann., 1970, 185(1): 91–111.
[7] Delanghe R. On the singularities of functions with values in a Clifiord algebra[J]. Math. Ann., 1972, 196(2): 293–319.
[8] Delanghe R. Clifiord analysis: History and perspective[J]. Comput. Meth. Funct. The., 2001, 1: 107–153. DOI:10.1007/BF03320981
[9] Delanghe R, Brackx F. Hypercomplex function theory and Hilbert modules with reproducing kernel[J]. Proc. London Math. Soc., 1978, 37: 545–576.
[10] Delanghe R, Sommen F, Soucek V. Clifiord algebra and spinor-valued functions[M]. Dordrecht: Kluwer Press, 1992.
[11] Eriksson S.L, Leutwiler H. Hypermonogenic functions and Möbius transformations[J]. Adv. Appl. Clifiord Alg., 2001, 11(s2): 67–76.
[12] Franks E, Ryan J. Bounded monogenic functions on unbounded domains[J]. Contemporary Math., 1998, 212(1): 71–79.
[13] Gürlebeck K, Kähler U, Ryan J, Sprössig W. Clifiord analysis over unbounded Domains[J]. Adv. Appl. Math., 1997, 19(2): 216–239. DOI:10.1006/aama.1997.0541
[14] Gürlebeck K, Sprössig W. Quaternionic analysis and elliptic boundary value problems[M]. Berlin: Akademie-Verlag, 1989.
[15] Iftimie V. Functions hypercomplex[J]. Bull. Math. Soc. Sci. Math. R. S. Romania, 1965, 57(9): 279–332.
[16] Lu Jianke. Boundary value problems of analytic functions[M]. Singapor: World Sci. Publ., 1993.
[17] Muskhelishvilli N. I. Singular integral equations[M]. Moscow: NauKa Press, 1968.
[18] Obolashvili E. Higher order partial difierential equations in Clifiord analysis[M]. Berlin: Birkhauser, Boston, Basel, 2002.
[19] Olea E. M. Morera type problems in Clifiord analysis[J]. Rev. Mat. Iberoam, 2001, 17(4): 559–585.
[20] Peetre J, Qian T. Möbius covariance of iterated Dirac operators[J]. J. Austral. Math. Soc. (Ser. A), 1994, 56(3): 403–414. DOI:10.1017/S1446788700035576
[21] Qian T, Ryan J. Conformal transformations and Hardy spaces arising in Clifiord analysis[J]. J. Oper. The., 1996, 35(3): 349–372.
[22] Xu Zhenyuan, Zhou Chiping. On boundary value problems of Riemann-Hilbert type for monogenic functions in a half space of Rm (m≥2)[J]. Complex Variables, 1993, 22(2): 181–193.
[23] Zhang Zhongxiang. On k-regular functions with values in a universal Clifiord algebra[J]. J. Math. Anal. Appl., 2006, 315(2): 491–505. DOI:10.1016/j.jmaa.2005.06.053
[24] Zhang Zhong xiang. Some properties of operators in Clifiord analysis[J]. Complex Var., Elliptic Eq., 2007, 52(6): 455–473. DOI:10.1080/17476930701200666
[25] Zhang Zhong xiang. Möbius transform and Poisson integral representation for monogenic func tions[J]. Acta Math. Sinica A, 2013, 56(4): 487–504.
[26] Zhang Zhong xiang. The Schwarz lemma in Clifiord analysis[J]. Proc. American Math. Soc., 2014, 142(4): 1237–1248. DOI:10.1090/proc/2014-142-04
[27] Zhang Zhong xiang. Some integral representations and singular integral over plane in Clifiord anal ysis[J]. Adv. Appl. Clifiord Algebras, 2014, 24: 1145–1157. DOI:10.1007/s00006-014-0498-5
[28] Zhang Zhong xiang. On singular integral equations with translations[J]. J. Math., 2001, 12(2): 161–167.