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Abstract: In this article, we study the integral representations over hyper-complex plane I1
for bi-regular functions and harmonic functions with values in a Clifford algebra. By constructing
the kernel functions, we give the integral representation formulas over hyper-complex plane IT for
bi-regular functions and harmonic functions with values in a Clifford algebra. These results are
extensions of integral representations over hyper-complex plane II for regular functions.
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1 Introduction

Integral representation formulas are very powerful tools for solving boundary value
problems in Clifford analysis. In [1-15, 18-28] etc., a great deal of work about integral
representation formulas and boundary value problems in Clifford analysis was well presented.
In [16-17], classical theories of boundary value problems and singular integral equations were
systematically built.

However, most of the work about integral representation formulas was built over bounded
domains. Naturally, developing integral representation formulas over unbounded domains
is important and interesting, it will serve to study the Riemann-Hilbert boundary value
problems for k—regular functions over unbounded domains in Clifford analysis. Similar to
Cauchy type integrals over the real axis in classical complex analysis, Cauchy type integrals
over the plane in Clifford analysis framework are also valuable. In [8], Cauchy transform
and Hilbert transform over R™ were introduced; In [12-13] etc., by constructing the new
Cauchy kernel function, some integral representation formulas over unbounded domains and
its applications were shown. In [27], Cauchy type integral and singular integral over hyper-
complex plane II in the hyper-complex space Rz were studied by using a special Mobius
transform, integral representation formulas over hyper-complex plane II for regular functions

were built.
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In this paper, combining the idea in [9] with the technique in [12-13], we construct the
kernel functions, and then give the integral representations over hyper-complex plane II for
bi-regular functions and harmonic functions with values in a Clifford algebra.

Let V,, o be an n-dimensional (n > 1) real linear space with basis {eq, €2, -+ ,e,}, C(Vy0)

be the 2"-dimensional real linear space with basis
{CA,A: {h1>"' 7hr}€PN71 S hl << hr Sn}a

where N stands for the set {1,---,n} and PN denotes the family of all order-preserving
subsets of N in the above way. We denote ey as eg and e, as ey, .., for A ={hy, -+, h.} €
PN. The product on C(V,, ) is defined by

epep = (—1)#(AQB)(—1)P(A’B)6AAB, if A,B S PN,

A= > > Aappeacs, if A= > Aaea, p= >, pugpep, (1.1)
AePN BePN AePN BePN

where #(A) is the cardinal number of the set A, the number P(A,B) = > P(A4,j),
JjEB

P(A,j) = #{i,i € A,i > j}, the symmetric difference set AAB is also order-preserving

in the above way, and A4 € R is the coefficient of the e -component of the Clifford number

A. We also denote Ay as Re(\). Thus C(V,, ) is called the Clifford algebra over V,, o.

An involution is defined by

ea=(—1)MWey,, if Ac PN,

XZ Z )\Aa, A= Z )\A(BA,
AePN AePN

where 0(A) = #(A)(#(A4) + 1)/2. The C (V,,0)-valued n-differential form

(1.2)

n n

do =3 (~hexdd) 7', Qo =30 (~1)erdd) !

k=0 k=0

are exact, where
dzy "t =dwo A Adzg_g Adaggr A Ada,.

In this paper, we confine n = 2. The real linear space with basis {eg, €1, e5} is a subspace
of C(Vayp), which is called the reduced quaternions and denoted by RQs;. The operator D

which is written as

2

0 : _

D=3 ez CO(QC(Va0)) — UV C(Va))
k=0

2 Some Definitions and Lemmas

Let RQ3; = {x =z + z1€1 + 263 : T, 21,22 € R}, then RQs is identical with the
usual Euclidean space R®. Denote IT = {x € RQs|zo = 0}, RQF = {x € RQs|Re(x) > 0},
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RQ; = {x € RQs3|Re(x) < 0}, 0B(x,r) = {y € RQsl|ly — x| = r}, then II and 0B(0,1) are
the plane and unit sphere in hyper-complex space RQs, respectively. Denote D(0,R) =
{x e ||| < R}.

Definition 2.1 Denote f € H*(II,C(Vay)) if fis H in II. f is called H in IT if f
satisfies the following conditions: (i) |f(x) — f(x*)| < M;|x —x*|* Vx,x* € D(0, R, ), where
R, is any given sufficiently great constant, M; is independent of x,x*, M; depends on Ry,

I
0<p<1 (ii)|f(x)— f(x*)] < M, < vx,x* € I\ D(0, R), where R, is any given
sufficiently great constant, M is independent of x,x*, My depends on Ry, 0 < p < 1.
Remark 2.1 Vx,x* € D(0,Rs) \ D(0, Ry), |f(x) — f(x*)] < M;|x —x*|" is equivalent
”w

1 1
to [f(x) = f(x")| < My | = — —
Remark 2.2 By Definition 2.1, if f € I/{T“(H,C(VQ,O)), then ‘ 1|im f(x) exists, denote
X|—oo
hm f(x) = f(c0) and

[X[—

, where M7 and M are given constants.

£ (x) = f(0) , Vx € I\ D(0, Ry). (2.1)

<

Definition 2.2 Denote f € Hé‘(l_[, C(Vayp)) if f is I/—jo in II. f is called f[o in IT if f
satisfies the following conditions: (i) f € }AI“(H, C(Vayp)); (i) f(oo) =0.

Definition 2.3 A function f € C™(Q,C(Vao))(r > 2) is called bi-regular in Q if
D?[f] = 0 in Q, which is also called 2-regular in €; A function f € C(Q,C(Vay))(r > 2)
is called harmonic in Q if A[f] =0 in @, where A is the Laplace operator.
1 y— m 1 y+x
dr |y — x>’ irly —Sn(x)P ~ irly +%
Sn(x) = —X, Sn(x) is just the symmetric point of x with respect to II, y # x. Denote
Ei(y —x) = Hi(y —x) — Hi(y — %), Hao(y —x) = Hi(y — %) - (Yo — 20), H3(y —x) =
Hi(y —x) - (Yo — o), E2(y —x) = Er(y — %) - (Yo — Zo)-

Lemma 2.1 Let H;(y — x), Ho(y — x), H (y — x) and Hj(y — x) be as above, then

1 v_x
Denote Hy(y — x) = yox Hi(y —x) =

D?[Hy(y —x)] = D[H\(y —x)] =0,
D?[H;(y —x)] = D[H{(y —x)] =0,

[Hao(y = x)|D* = [Hi(y —x)]D =0,

where D = Z er—=—
dr
Lemma 2 2 Let F1(y —x) and E»(y — x) be as above, then

{ D?[Ey(y —x)] = D[Ei(y —x)] =0,
[Ex(y —x)]D? = [Ei(y —x)|D =0,

0

where D = e
Z oy
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Denote K(y —) =~ Gly ~ %) = <p(y1 S )>,Where

0
here D = e
v > g

Lemma 2 4 Let G(y — x) be as above, then
{ DG(y —x)] =[Gy —x)]D = Ex(y —x),
DGy —x)] =[Gy =x)|D = Ei(y —x),

0
here D = e
v gy

Lemma 2 5 Let F1(y — x) be as above, then

|Ey(y — M_md< 2 L ! ). (2.2)

ly—xPP  ly—xPly+x| |y —x[ly +x]?

Lemma 2.6 Let f € C®(Q,C(Va,))NCP(Q,C(Vay)) and D2[f] = 0 in Q, where Q
is a bounded domain with smooth boundary in RQs, then for any x ¢ Q,

/H1 —x)do, f(y /H2 y — x)do, D[f](y) = 0. (2.3)

Proof By Lemma 2.1 and Stokes’ formula (see [5]), the result follows.
Lemma 2.7 (see [9]) Let f € C®(Q,C(V,0))NCM(Q,C(Vayp)) and D2[f] = 0 in Q,

where (2 is a bounded domain with smooth boundary in RQ3, then for any x € €,

/H1 y —x)do, f(y /H2 y — x)do, D[f](y). (2.4)

Lemma 2.8 Let f € C®(Q,C(Va))NCM(Q,C(Vay)) and A[f] = 0 in Q , where Q
is a bounded domain with smooth boundary in RQs, then for any x ¢ Q,

Hi(y — x)do, f(y) / K(y — x)da, D[f](y) = 0. (2.5)
o0 o0

Proof By Lemma 2.1, Lemma 2.3 and Stokes’ formula, the result follows.
Lemma 2.9 Let f € C®(Q,C(V,0))NCHM(Q,C(Vay)) and A[f] = 0 in © , where
is a bounded domain with smooth boundary in RQs, then for any x ¢ Q,

/H1 — x)do, f(y /K(y—xday [f1(y) = 0. (2.6)
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Proof By Lemma 2.1, Lemma 2.3 and Stokes’ formula, the result follows.
Lemma 2.10 Let f € C®(Q,C(Va0))NCV(Q,C(Vayp)) and A[f] = 0 in Q, where

is a bounded domain with smooth boundary in RQ3, then for any x € €2,

/H1 x)do, f(y /K — x)do, D[f](y). (2.7)

Proof By Lemma 2.8, it can be similarly proved as in Lemma 2.7.
Lemma 2.11 Let f € C®(Q,C(Va,0))NCM(Q,C(Vayp)) and Alf] = 0in Q , where

is a bounded domain with smooth boundary in R(Q)s, then for any x € €,

/H1 x)do, f(y /K — x)do, D[f](y). (2.8)

Proof By Lemma 2.9, it can be similarly proved as in Lemma 2.7.
Lemma 2.12 (see [27]) Let f € ﬁ]“(H, C(Vap)), then for all y,,y,, €1I,

D(Y,.R) DY)
where x € RQs.

3 Integral Representations over Il for Bi-Regular Functions

In this section, we shall give the integral representations over II for bi-regular functions.
For f(x) € fl“(ﬂ, C(Vayp)), the Cauchy type integral C'f over II is defined by

x) = | 2o eas, x e 51)
where '
dr // Iy—X\3 = R 47r// (y)ds. (3.2)
D(0,R)

Lemma 3.13 (see [27]) Let f(y) € H*(II, C(Vap)), Cf(x) be defined as in (3.1), then
Cf(x) exists and

T - // = X|3 — f(00))dS, x € RQY,

Cf(x) = (3.3)
_T _ 1 // - x|3 ~ f(c0))dS, x € RQ;.

Theorem 3.1 Let f € C?(Q,C(Va))NCM(Q,C(Vayp)) and D?[f] = 0 in Q, where Q
is a bounded domain with smooth boundary in RQj, then for any x € (,

f(x) = / Ey(y - x)doy f(y) - / Ex(y — x)do, D[f](y)- (3.4)

oN o0
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Proof By Lemma 2.2, Lemma 2.7 and Stokes’ formula, the result follows.
Denote 07B(x, R) = {y|y € dB(x, R), Re(y) > 0}.
Lemma 3.14 For any x € RQ{,

1
lim / H,(y —x)do, = lim / H{(y — x)do, = 3 (3.5)

R—+o00 R—+o0
8+B(X,R) O0tB(X,R)
Proof It can be proved by Lemma 2.5.
Lemma 3.15 Let f € ﬁ“(RQ;, C(Vay)), then for any x € RQ7,

R—+oco R—+o00 2
O*+B(X,R 0*tB(X,R)

lim /)Hl(y—x)dayf( = lim / Hi(y —x)do, f(y) = 1f(oo) (3.6)

Proof It can be proved by Lemma 3.14.
Lemma 3.16 Let D[f] € H/(RQ:,C(Vay)), then for any x € RQT,

dim [ By - x0do, D) =0 (3.7)

d+B(X,R)
Proof It can be proved by Lemma 2.5.
Lemma 3.17 Let f € ﬁ“(l_[, C(Vay)), then for all y,,y,, €II,

Jim | [ B exfmas - [ B -wsmas| -0 6

D(y..R) D(Y...R)

where x € RQs3.

Proof By Lemma 2.5, it can be similarly proved as in Lemma 2.12.

Theorem 3.2 Let f € CO(RQ:, C(Va,0)) N CP(RQ;,C(Vao)), f € H*(RQT,C(Vay)),
DI[f] € H!(RQF,C(Vay)) and D2[f] = 0 in RQY, then for any x € RQT,

- [[ By 2515 + [[ Bty —pinwas. (39)
Proof For any x € RQJ, denote ) = B(x R)N RQ%, by Theorem 3.1, we have
f(x)= [ Ex(y —x)do, f(y) = | E2(y —x)do,D[f](y). (3.10)
/ J

By Lemma 2.12 and Lemma 3.15, it can be proved that

lim | Ey(y —x)do, f(y //E1 —x)f(y)dS (3.11)

R— 400
o0
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In view of

/ Es(y — x)do, DIf](y)

7 [ Es-0woiio- [ By -plies (3:12)

0tB(X,R) pdmx,\/R?—22)

where Imx = x1e; 4+ z2e5. By Lemma 3.17, in view of D[f] € ﬁg(RQ;, C(Vap)) , we have

Jim [ B -0pAes = [[ Be-obAeds.  (613)

p(Imx,/R2—a2)
By Lemma 3.16, Combining (3.12) with (3.13), we have

lim | Ey(y —x)do,D //E2 — x)DI[f](y)dsS. (3.14)

R— 400
o

Combining (3.10), (3.11) with (3.14), taking R — +o0 in (3.10), the result follows.

4 Integral Representations over Il for Harmonic Functions

In this section, we shall give the integral representations over II for harmonic functions.
1 1

1
Denote K*'(y - x)=—————— = —— —— |
O =) = G oy =)~ py £
Theorem 4.3 Let f € C(Q,C(Va,0))NCV(Q,C(Vayg)) and Alf] = 0 in ©Q, where Q

is a bounded domain with smooth boundary in RQ3, then for any x € (,

f(x) = / Ex(y — x)do, f(y) - / Gy — x)do, D[f)(y). (1.1)

o0 o0

Proof By Stokes’ formula and Lemma 2.3, for any x € 2, we have

/H* — x)do, f(y /K y — x)do, D[f|(y) = (4.2)

Combining Lemma 2.10 with (4.2), the result follows.
Theorem 4.4 Let f € CH(Q,C(Va,))NCV(Q,C(Vayg)) and Alf] = 0 in Q, where Q
is a bounded domain with smooth boundary in RQ3, then for any x € ,

f(x) = / Fily - x)doy f(y) - / Gy — x)do, DIf](y). (4.3)

o0 o0

Proof By Stokes’ formula and Lemma 2.3, for any x € €2, we have

/H* — x)do, f(y /K y — x)do, D[f](y) = 0. (4.4)
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Combining Lemma 2.11 with (4.4), the result follows.
Lemma 4.18 Let f € H*(II,C(Vay)), then for all y,,y,, € II,

dim | [ e -xfmas- [[ ay-xsmas| -0 6
D(y...R)

D(Y..R)

where x € RQs3.

Proof It can be similarly proved as in Lemma 2.12.

Theorem 4.5 Let f € CO(RQ] ., C(Va,0)) O (RQS, C(Vao)). f € H*(RQS, C(Vay)),
DI[f] € H!(RQT,C(Vay)) and A[f] = 0 in RQT, then for any x € RQ},

- [[ By w5105+ [[ 6= opinmas. (4.6)
Proof For any x € RQ7, denote Q = B(x, R) (| RQ5, by Theorem 4.3, we have
fx)= [ Ei(y —x)do, f(y) — | G(y —x)do, D[f](y). (4.7)
/ /

By Lemma 2.12 and Lemma 3.15, it can be proved that

lim Ey(y —x)do, f(y // Ei(y —x)f(y)dS. (4.8)

R—+oc0
o

In view of

/ Gly — x)do, D[f)(y)

09 (4.9)
- [ cv-x@plAw - [ G- xDlms
OTB(X,R) pdmx,\/R2—22)
where Imx = x1e; + x265. In view of D[f] € fAI(’f(RQgL, C(Va,)), it can be proved that
din [ Gy -0l =0 (4.10)
O+B(X,R)

By Lemma 4.18, in view of D[f] € H!'(RQT,C(Vay)), we have

im [ av-xpiAmas = [[ ey -xpismas (4.11)

R— 400
pdmx,\/R2—22) II
Combining (4.9), (4.10) with (4.11), we have
i [ 6= x50l = - [[ G- xDlAms: (4.12)

o2 II
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Combining (4.7), (4.8) with (4.12), taking R — o0 in (4.7), the result follows.
Corollary 4.1 Let f € CD(RQT,C(Va0)) N C@(RQT, C(Vay)), f € HM(RQT,C(Vay))
and D[f] = 0 in RQ5, then for any x € RQ1,

fx) = / / Euly — %) f(y)dS. (1.13)

Theorem 4.6 Let f € C(RQF,C(Va,0)) N CP(RQS,C(Vayp)), f € H*(RQ3,C(Vay)),
D[f] € H'(RQT,C(Vay)) and A[f] = 0 in RQ3, then for any x € RQY,

109 =~ || Bty = fas + [[ 6ty - xD1rv)as (4.14)

Proof By Theorem 4.4, it can be similarly proved as in Theorem 4.5.
Corollary 4.2 Let f € CV(RQT,C(Va0)) NCH(RQT,C(Vay)), f € ﬁ“(RQ;, C(Vay))
and D[f] = 0 in RQ5, then for any x € RQ1,

fx) = - / / Ei(y — %) f(y)dS. (4.15)
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