| 摘要: |
| 本文刻画了素*代数上的非线性混合Lie三重ξ-导子(ξ≠1)的结构.利用皮尔斯分解和混合Lie三重ξ-导子的性质,证明了一个有单位元和非平凡投影的素*-代数上的非线性的混合Lie三重ξ-导子(ξ≠1)一定是可加导子,且关于ξ是线性的. |
| 关键词: 混合Lie三重ξ-导子 *-代数 导子 |
| DOI: |
| 分类号:O153.5 |
| 基金项目: |
|
| THE MIXED LIE TRIPLE ξ-DERIVATION ON PRIME *-ALGEBRAS |
|
ZHOU You1, YANG Zhu-jun2, ZHANG Jian-hua2
|
|
1.School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China;2.School of Mathematics and Information Sciences, Shaanxi Normal University, Xi'an 710062, China
|
| Abstract: |
| The aim of this paper is to characterize the nonlinear mixed Lie triple ξ-derivation (ξ≠1) of a prime *-algebra. By using Peirce decomposition and the main proposition of mixed Lie triple ξ-derivation, it is proved that the nonlinear mixed Lie triple ξ-derivation (ξ≠1) of a prime *-algebra with unit and non-trivial projection is an additive *-derivation and linear about ξ. |
| Key words: mixed Lie triple ξ-derivation *-algebra derivation |