引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 867次   下载 1698 本文二维码信息
码上扫一扫!
分享到: 微信 更多
双漂移拉普拉斯特征值的最优估计
李艳丽1,2, 杜锋2,3
1.荆楚理工学院电子信息工程学院, 湖北 荆门 448000;2.湖北大学数学与统计学学院, 湖北 武汉 430062;3.荆楚理工学院数理学院, 湖北 荆门 448000
摘要:
本文研究了四类双漂移拉普拉斯算子的特征值问题.利用带权Reilly公式,当m-权重Ricci曲率满足一定条件时,得到了紧致带边光滑度量测度空间上四类双漂移拉普拉斯算子的第一非零特征值的最优估计.推广了双调和算子特征值的相应结果.
关键词:  特征值  漂移拉普拉斯  光滑度量测度空间  m-权重Ricci曲率  Steklov问题
DOI:
分类号:O186.1
基金项目:Supported by Scientific Research Foundation of Hubei Provincial Department of Education (D20184301) and the Hubei Key Laboratory of Applied Mathematics (Hubei University).
SHARP ESTIMATES FOR EIGENVALUES OF BI-DRIFTING LAPLACIAN
LI Yan-li1,2, DU Feng2,3
1.School of Electronic and Information Science, Jingchu University of Technology, Jingmen 448000, China;2.Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China;3.School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China
Abstract:
In this paper, we study the four types of eigenvalue problems for the bi-drifting Laplacian. By using the weighted Reilly formula, we get some sharp lower bounds for the first nonzero eigenvalue for these eigenvalue problems on compact smooth metric measure spaces with boundary and under some condition on the m-weighted Ricci curvature, which generalize the corresponding results for the eigenvalues of biharmonic operator.
Key words:  eigenvalues  drifting Laplacian  smooth metric measure spaces  m-weighted Ricci curvature  Steklov problem