引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5007次   下载 3705 本文二维码信息
码上扫一扫!
分享到: 微信 更多
发散维数SICA惩罚Cox回归模型的一种修正BIC调节参数选择器
石跃勇1,2, 焦雨领3, 严良1, 曹永秀3
1.中国地质大学(武汉)经济管理学院, 湖北 武汉 430074;2.中国地质大学(武汉)资源环境经济研究中心, 湖北 武汉 430074;3.中南财经政法大学统计与数学学院, 湖北 武汉 430073
摘要:
本文研究了发散维数SICA惩罚Cox回归模型的调节参数选择问题,提出了一种修正的BIC调节参数选择器.在一定的正则条件下,证明了方法的模型选择相合性.数值结果表明提出的方法表现要优于GCV准则.
关键词:  Cox模型  修正BIC  惩罚似然  SICA惩罚  光滑拟牛顿
DOI:
分类号:O212.1
基金项目:Supported by National Natural Science Foundation of China (11501579); Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGW150809).
A MODIFIED BIC TUNING PARAMETER SELECTOR FOR SICA-PENALIZED COX REGRESSION MODELS WITH DIVERGING DIMENSIONALITY
SHI Yue-yong1,2, JIAO Yu-ling3, YAN Liang1, CAO Yong-xiu3
1.School of Economics and Management, China University of Geosciences, Wuhan 430074, China;2.Center for Resources and Environmental Economic Research, China University of Geosciences, Wuhan 430074, China;3.School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China
Abstract:
This paper proposes a modifled BIC (Bayesian information criterion) tuning parameter selector for SICA-penalized Cox regression models with a diverging number of covariates. Under some regularity conditions, we prove the model selection consistency of the proposed method. Numerical results show that the proposed method performs better than the GCV (generalized crossvalidation) criterion.
Key words:  Cox models  modifled BIC  penalized likelihood  SICA penalty  smoothing quasi-Newton