引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2181次   下载 2280 本文二维码信息
码上扫一扫!
分享到: 微信 更多
所有极大子群都为SMSN-群的有限群
郭鹏飞
作者单位
郭鹏飞 海南师范大学数学与统计学院, 海南 海口 571158;连云港师范高等专科学校数学与信息工程学院, 江苏 连云港 222006 
摘要:
若有限群G的每个2-极大子群在G中次正规,则称G为SMSN-群.本文研究了有限群G的每个真子群是SMSN-群但G本身不是SMSN-群的结构,利用局部分析的方法,获得了这类群的完整分类,推广了有限群结构理论的一些成果.
关键词:  幂自同构  幂零群  内幂零群  极小非SMSN-群
DOI:
分类号:O152.1
基金项目:Supported by National Natural Science Foundation of China (11661031); Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-Aged Teachers and Presidents; "333" Project of Jiangsu Province(BRA2015137); "521" Project of Lianyungang City.
FINITE GROUPS WHOSE ALL MAXIMAL SUBGROUPS ARE SMSN-GROUPS
GUO Peng-fei
Abstract:
A flnite group G is called an SMSN-group if its 2-maximal subgroups are subnormal in G. In this paper, the author investigates the structure of flnite groups which are not SMSN-groups but all their proper subgroups are SMSN-groups. Using the idea of local analysis, a complete classiflcation of this kind of groups is given, which generalizes some results of the structure of flnite groups.
Key words:  power automorphisms  nilpotent groups  minimal non-nilpotent groups  minimal non-SMSN-groups