|
摘要: |
本文研究一类带食饵趋向的Beddington-DeAngelis捕食者-食饵扩散模型,其中食饵趋向性描述的是捕食者对食饵数量变化而产生的一种正向迁移.利用Neumann热半群的Lp-Lq估计和带抛物型方程Moser迭代的Lp估计,获得了该模型经典解的整体有界性. |
关键词: 捕食者-食饵 扩散 食饵趋向 经典解 整体有界性 |
DOI: |
分类号:O175.26 |
基金项目: |
|
GLOBAL BOUNDEDNESS OF SOLUTIONS IN A BEDDINGTON-DEANGELIS PREDATOR-PREY DIFFUSION MODEL WITH PREY-TAXIS |
MA Wen-jun,SUN Liang-liang
|
Abstract: |
In this paper, we study a Beddington-DeAngelis predator-prey difiusion model with prey taxis, where the prey-taxis describes a direct movement of the predator in response to a variation of the prey. We prove that the global classical solutions are globally bounded by the Lp-Lq estimates for the Neumann heat semigroup and Lp estimates with Moser's iteration of parabolic equations. |
Key words: predator-prey difiusion prey-taxis classical solution global boundedness |