引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2466次   下载 3262 本文二维码信息
码上扫一扫!
分享到: 微信 更多
近切触流形的φ*-解析向量场
陈小民
作者单位
陈小民 中国石油大学(北京)理学院, 北京 102249 
摘要:
本文引入了近切触流形(M,ø,ξ,η,g)中φ*-解析向量场的概念,并研究了其性质.利用近切触流形的性质,证明了切触度量流形中的φ*-解析向量场v是Killing向量场且φv不是φ*-解析的.特别地,如果近切触流形M是正规的,得到vξ平行且模长为常数.另外,证明了3维的切触度量流形不存在非零的φ*-解析向量场.
关键词:  φ*-解析向量场  Killing向量场  近切触结构  切触度量流形  Sasaki流形
DOI:
分类号:O186.12
基金项目:Supported by the Science Foundation of China University of PetroleumBeijing (2462015YQ0604) and partially by the Personnel Training and Academic Development Fund (2462015QZDX02).
φ*-ANALYTIC VECTOR FLELDS IN ALMOST CONTACT MANIFOLDS
CHEN Xiao-min
Abstract:
In this article, we introduce the conception of φ*-analytic vector field in almost contact manifold (M, ø, ξ, η, g) and study its properties. Making use of the properties of almost contact manifold, we prove that in a contact metric manifold the φ*-analytic vector field v is Killing, and that φv must not be φ*-analytic unless zero vector field. Particularly, if M is normal, we get that v is collinear to ξ with constant length, and for the case of three dimensional contact metric manifold it is proved that there does not exist a non-zero φ*-analytic vector field.
Key words:  φ*-analytic vector field  Killing vector field  almost contact structure  contact manifold  Sasakian manifold