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Abstract: In this article, we introduce the conception of φ∗-analytic vector field in almost

contact manifold (M, φ, ξ, η, g) and study its properties. Making use of the properties of almost

contact manifold, we prove that in a contact metric manifold the φ∗-analytic vector field v is Killing,

and that φv must not be φ∗-analytic unless zero vector field. Particularly, if M is normal, we get

that v is collinear to ξ with constant length, and for the case of three dimensional contact metric

manifold it is proved that there does not exist a non-zero φ∗-analytic vector field.
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1 Introduction

Tachiana [10, 11] introduced the conception of contravariant almost analytic vector
field in a certain almost Hermitian manifold based on the fact that on a compact Kähler
manifold, the inner product of a contravariant vector field and a covariant vector field is
constant. Later, this conception was generalized to the general almost complex manifolds
by several mathematicians [8, 15]. Precisely, in an almost complex manifold M with almost
complex structure J a contravariant almost analytic vector field v is defined by LvJ = 0,

where Lv denotes the Lie derivative along v. Further, Sawaki and Tamakatsu [9] in 1967
defined and studied an extended contravariant almost analytic vector v in an almost complex
manifold, namely, in a local orthonormal frame it satisfies LvJ

i
j +λJr

j N i
rlv

l = 0, here λ is C∞

scalar function and N i
rl is Nijenhuis tensor. In addition, Tamakatsu gave a decomposition of

this kind of vector fields [12].
As an odd dimensional analogue of contravariant almost analytic vector fields in an

almost complex manifold, Sato [7] defined a called contravariant C-analytic vector v in a
Sasakian manifold with (1, 1)-tensor φ by (Lvφ)φ = 0. Following this definition, Eum and
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Kim [5] provided a definition of contravariant C∗-analytic vector field v in a cosymplectic
manifold defined by

(Lvφ)φ = 0 and Lvξ = 0.

They obtained an unique decomposition of this vector field in compact cosymplectic η-
Einstein manifolds. This result is the analogue of a contravariant analytic vector in a compact
Kähler space [14] and Sasakian manifold [7], respectively.

Besides, in [4] Deshmukh defined a called φ-analytic vector field and studied the case
where the induced structure vector ξ in real hypersurfaces of complex projective space CP

n+1
2

is φ-analytic.
For an almost contact manifold with almost contact structure (φ, ξ, η), we may consider

a vector field v such that it leaves φ invariant, i.e., Lvφ = 0. By a simple calculation we
have Lvξ = σξ, where σ is a smooth function. Particularly, Ghosh and Sharma proved that
σ is constant in a contact metric manifold [6, Lemma 1].

Motivated by the above background, in the present paper we define a vector field called
φ∗-analytic vector field, which leaves the (1, 1)-tensor φ invariant and satisfies σ = 0 in
an almost contact metric manifold (see Def.2.1). In Section 2, we will give some basic
conceptions and properties, and the main results and proofs are showed in Section 3.

2 Definitions, Examples and Basic Properties

Let M2n+1 be a (2n+1)-dimensional Riemannian manifold. An almost contact structure
on M is a triple (φ, ξ, η), where φ is a (1, 1)-tensor field, ξ a unit vector field, η a one-form
dual to ξ satisfying

φ2 = −I + η ⊗ ξ, η ◦ φ = 0, φ ◦ ξ = 0. (2.1)

A smooth manifold with such a structure is called an almost contact manifold. It is
well-known that there exists a Riemannian metric g such that

g(φX, φY ) = g(X, Y )− η(X)η(Y ) (2.2)

for any X, Y ∈ X(M). It is easy to get from (2.1) and (2.2) that

g(φX, Y ) = −g(X, φY ), g(X, ξ) = η(X). (2.3)

Due to (2.3), we can decompose the tangent bundle of an almost contact manifold as the
orthonormal sum of the codimension 1 bundle D = kerη and the 1-dimensional foliation
defined by ξ. An almost contact structure (φ, ξ, η) is said to be normal if the Nijenhuis
torsion

Nφ(X, Y ) = φ2[X, Y ] + [φX, φY ]− φ[φX, Y ]− φ[X, φY ] + 2dη(X, Y )ξ (2.4)

vanishes for any vector fields X, Y on M .
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A contact metric manifold is an almost contact manifold (M, φ, ξ, η, g) such that the
metric g satisfies

dη(X, Y ) = g(X, φY ), (2.5)

∀X, Y ∈ X(M). Moreover, it is well-known that there exists a (1, 1)-tensor field h on a
contact manifold defined by h = 1

2
Lξφ and it satisfies

hξ = 0, φh = −hφ, (2.6)

∇Xξ = −φX −AX, (2.7)

where A = φh.
From (2.5), we have ξydη = 0, which means that ξ is a geodesic vector field (see [2,

Lemma 6.3.3]). If the structure vector field ξ is Killing, then M is said to be K-contact. It
is easy to see that M is K-contact if and only if h = 0.

Also, if the Nijenhuis tensor of contact manifold Nφ = 0 then it is said to be Sasakian,
and the following formula is also well-known for a Sasakian manifold (see [1])

(∇Xφ)Y = g(X, Y )ξ − η(Y )X. (2.8)

Moreover, we know that a Sasakian manifold is automatically K-contact and in general the
converse is not true, but a three dimensional K-contact manifold is always Sasakian.

Definition 2.1 A vector field v in an almost contact manifold (M, φ, ξ, η, g) is called
φ∗-analytic vector field if it satisfies

Lvξ = 0 and Lvφ = 0. (2.9)

Two equations of (2.9) are respectively equivalent to [v, ξ] = 0 and [v, φX] = φ[v, X],
∀X ∈ X(M), where [·, ·] denotes by the Lie bracket.

Next, we will give an example of φ∗-analytic vector field in almost contact manifold.
Example 2.2 Consider the (2n+1)-dimensional Euclidean space R2n+1 equipped with

the Cartesian coordinates (x1, · · · , xn, y1, · · · , yn, z). Define the almost contact structure
(φ, ξ, η, g) by

φ(
∂

∂xi

) = − ∂

∂yi

, φ(
∂

∂yi

) =
∂

∂xi

+ yi
∂

∂z
, φ(

∂

∂z
) = 0,

ξ = 2
∂

∂z
, η =

1
2
(dz −

n∑
i=1

yidxi), g = η ⊗ η +
1
4

n∑
i=1

(
(dxi)2 + (dyi)2

)
.

The φ∗-analytic vector field v can be written as v =
n∑

i=1

(V i ∂
∂xi

+ V
i ∂
∂yi

) + V z ∂
∂z

. By (2.9),

we derive that V i and V
i
do not depend on z and that the following PDEs hold

∂V i

∂xj

=
∂V

i

∂yj

,
∂V i

∂yj

= −∂V
i

∂xj

, yi
∂V i

∂yj

=
∂V z

∂yj

,

V
j

= yj
∂V z

∂z
− yi

∂V
i

∂yj

,
∂V z

∂z
= 0.

(2.10)
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It is clear that there exists a non-zero solution V i = c, V
i

= 0, V z = H(x1, · · · , xn),
where H is a smooth function on R2n+1 and c is a non-zero constant. Hence we see that
c

n∑
i=1

∂
∂xi

+ H(x1, · · · , xn) ∂
∂z

is a φ∗-analytic vector field in (R2n+1, φ, ξ, η, g).

For any an almost contact manifold, we have the following:
Proposition 2.3 For a φ∗-analytic vector field v in almost contact manifold (M, φ, ξ, η, g),

the following identity holds: g(∇Xv, ξ) + g(∇ξv, X) = 0, ∀X ∈ X(M).
Proof From the definition of the φ∗-analytic vector field we know [ξ, v] = 0, i.e.,

∇vξ = ∇ξv. Using (2.1), a straightforward computation yields

[φ2X, v] = ∇φ2Xv −∇v(φ2X) = −∇Xv +∇vX − η(∇vX)ξ − g(∇ξv, X)ξ.

On the other hand,

φ[φX, v] = φ2(∇Xv −∇vX) = −∇Xv +∇vX + η(∇Xv)ξ − η(∇vX)ξ.

Then by replacing X by φX in (2.9) and comparing the previous two equations, we complete
the proof.

Write f = g(ξ, v), which is a smooth function, then the following corollaries are easy to
obtain from Proposition 2.3.

Corollary 2.4 If (M, φ, ξ, η, g) is an almost contact manifold with φ∗-analytic vector
field v, then v(f) = 0. In particular, if v ∈ D the integral curves of ξ are geodesics.

Proof The first assertion is obvious by making use of Proposition 2.3 with X = v. If
v ∈ D, then from Proposition 2.3 with X = ξ, we have g(v,∇ξξ) = 0, i.e., ∇ξξ ∈ Span{ξ},
so ∇ξξ = 0.

Corollary 2.5 Let v be a φ∗-analytic vector in almost contact manifold (M, φ, ξ, η, g).
If η is closed, then f is constant.

Proof Applying Proposition 2.3, for any vector field X, we have

dη(X, v) = X(η(v))− v(η(X))− η([X, v]) = g(v,∇Xξ)− g(X,∇ξv) = X(f).

Corollary 2.6 Let (M, φ, η, ξ, g) be a contact metric manifold with φ∗-analytic field v.
Then ∇vξ − φ∇φvξ = −2φv and ξ(f) = 0.

Proof Using (2.7) for X = v and X = φv, respectively, we have

∇vξ = −φv −Av, ∇φvξ = v − fξ −Aφv.

Therefore it completes the proof the first assertion in view of (2.6) and the above two
equations.

On other hand, in terms of Proposition 2.3 with X = ξ, we have g(∇ξv, ξ) = 0, that is,
ξ(f) = 0.

3 Main Results and Proofs

In this section, we shall suppose that (M, φ, ξ, η, g) is always a contact metric manifold.
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Theorem 3.1 A φ∗-analytic vector field v in a contact metric manifold M is Killing.
Proof In view of Proposition 2.3, for any X ∈ X(M), we have

(vydη)(X) = dη(v, X) = −X(f),

which means that vydη = −df . Thus Lvdη = d(vydη) = 0. Since for a contact metric
manifold the associated metric g may write as dη ◦ (φ ⊗ I) + η ⊗ η by (2.5), where I is the
identical map on TM , we get Lvg = dη ◦ (Lvφ ⊗ I). Therefore we complete the proof from
(2.9).

Remark 3.2 In fact, a Killing vector field is not necessary φ∗-analytic, however, in
particular, if the structure vector field ξ is Killing then the converse of Theorem 3.1 is valid
(see [2, Proposition 6.6.12]).

From [13, Theorem 3.4], we have
Corollary 3.3 The φ∗-analytic vector field v in contact metric manifold satisfies

∆v+Qv = 0, here ∆ and Q denote by the Laplace operator and Ricci operator, respectively.
Next we will prove the following conclusion.
Theorem 3.4 Let (M, φ, η, ξ, g) be a contact metric manifold with φ∗-analytic field v.

Then φv must be not a φ∗-analytic vector field unless zero vector.
To prove this theorem we need the following two lemmas.
Lemma 3.5 Under the assumption of Theorem 3.4, if φv is also a φ∗-analytic vector

field, then ∇ξv = −φv.
Proof Since vydη = −df , using (2.5) we have φv = Df , where D denotes by the

gradient operator. Thus if φv is φ∗-analytic, [φX, Df ] = φ[X, Df ] for any X ∈ X(M), which
implies [ξ,Df ] = 0. It reduces that hv = 0 from the definition of h. Hence we complete the
proof in terms of (2.7).

Lemma 3.6 Under the assumption of Theorem 3.4, if φv is also a φ∗-analytic vector
field then

(∇Xφ)v = g(v, X)ξ − fX.

Proof For any contact metric manifold the following identity (see [2, Lemma 7.3.2])
holds

2g((∇Xφ)Y, Z) = g(Nφ(Y, Z), φX) + 2dη(φY, X)η(Z)− 2dη(φZ,X)η(Y )

for any X, Y, Z ∈ X(M).
Since v and φv are φ∗-analytic vector fields, we obtain

2g((∇Xφ)v, Y ) = g(Nφ(v, Y ), φX) + 2dη(φv, X)η(Y )− 2dη(φY, X)η(v)

= g((Lφvφ)Y + φ(Lvφ)Y, φX)− 2g(φ2v, X)η(Y ) + 2g(φ2Y, X)η(v)

= −2g(φ2v, X)η(Y ) + 2g(φ2Y, X)η(v).

Hence
(∇Xφ)v = −g(φ2v, X)ξ + η(v)φ2X = g(v, X)ξ − fX.
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Proof of Theorem 3.4 We assume that φv is also a φ∗-analytic vector field, then φv

is also Killing because of Theorem 3.1, namely, for any X, Y ∈ X(M), we have

g(∇X(φv), Y ) + g(∇Y (φv), X) = 0.

Making use of Lemma 3.6, we obtain

g(v, X)η(Y ) + g(v, Y )η(X)− 2fg(X, Y ) + g(φ∇Xv, Y )− g(∇Y v, φX) = 0.

Hence using Theorem 3.1 gives

g(v, X)ξ + η(X)v − 2fX + φ∇Xv +∇φXv = 0. (3.1)

By replacing φX by X in (3.1) and using Lemma 3.5, we get

g(v, φX)ξ − 2fφX + φ∇φXv −∇Xv − η(X)φv = 0. (3.2)

Operating φ onto (3.2) and using Proposition 2.3, we have

2fX − 4fη(X)ξ −∇φXv + g(v, X)ξ − φ∇Xv + η(X)v = 0.

Thus by comparing with (3.1) it yields that 2fη(X)ξ − g(v, X)ξ − η(X)v = 0 for any
X ∈ X(M), which implies φ2v = 0 by taking X = ξ in the above formula. So φv must be
identically zero. We complete the proof.

For the case where M is a normal contact metric manifold, i.e., a Sasakian manifold,
we have

Theorem 3.7 Let v be a φ∗-analytic vector field in a Sasakian manifold. Then f =
g(v, ξ) is constant and v is collinear to ξ with constant length.

Proof In the proof of Theorem 3.1, we have known vydη = −df . Since M is Sasakian,
Nφ = 0. Thus it follows from (2.4) and (2.9) that Nφ(X, v) = 2dη(X, v)ξ = 0 for every field
X, that means that df = 0.

On the other hand, from (2.5) and Proposition 2.3, we know that φv = Df . Hence
v = −φDf + fξ = fξ. We complete the proof of theorem.

At last we consider that M is a three dimensional contact metric manifold. Let U be the
open subset where the tensor h 6= 0 and U ′ be the open subset such that h is identically zero.
Thus U ∪ U ′ is open dense in M . Assume that M is non-K-contact, then U is non-empty
and there exits a local orthonormal frame field E = {e1, e2 = φe1, ξ} such that he1 = µe1

and he2 = −µe2, where µ is a positive non-vanishing smooth function of M . With respect
to the frame field, we have

Lemma 3.8 [3] Let (M3, φ, η, ξ, g) be a contact metric manifold. Then with respect to
E the Levi-Civita connection ∇ is given by

∇e1e1 = be2, ∇e1e2 = −be1 + (1 + µ)ξ, ∇e1ξ = −(1 + µ)e2,

∇e2e1 = −ce2 + (µ− 1)ξ, ∇e2e2 = ce1, ∇e2ξ = (1− µ)e1,

∇ξe1 = −ae2, ∇ξe2 = ae1, ∇ξξ = 0,
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where a, b and c are smooth functions.
Theorem 3.9 There does not exist a non-zero φ∗-analytic vector field in a three

dimensional contact metric manifold.
Proof First, for E , e3 = ξ is globally defined, thus we can define the global frame field,

still denoted by {e1, e2, e3 = ξ}, by lifting to the universal covering space M̃3 if necessary.
Since v = −φDf + fξ, with respect to the orthonormal frame field E , v can be also written
as v = e2(f)e1 − e1(f)e2 + fξ. In view of Lemma 3.8 and Corollary 2.6, we compute

∇ξv = ξ(e2(f))e1 + e2(f)∇ξe1 − ξ(e1(f))e2 + e1(f)∇ξe2

= ξ(e2(f))e1 − ae2(f)e2 − ξ(e1(f))e2 + ae1(f)e1

=
(
ξ(e2(f)) + ae1(f)

)
e1 −

(
ae2(f) + ξ(e1(f))

)
e2.

(3.3)

Similarly, we have

∇e1v =
[
e1(e2(f)) + be1(f)

]
e1 +

[
be2(f)− e1(e1(f))− f(µ + 1)

]
e2 − e1(f)µξ (3.4)

and

∇e2v =
[
e2(e2(f))− ce1(f) + f(1− µ)

]
e1 −

[
e2(f)c + e2(e1(f))

]
e2 + e2(f)µξ. (3.5)

By Theorem 3.1, we know

g(∇ξv, e1) + g(∇e1v, ξ) = 0, g(∇ξv, e2) + g(∇e2v, ξ) = 0.

Thus making use of (3.3), (3.4) and (3.5), we obtain

{
ξ(e2(f)) = (µ− a)e1(f),
ξ(e1(f)) = (µ− a)e2(f).

(3.6)

On the other hand, we notice that for a φ∗-analytic vector field, ∇ξv = ∇vξ, i.e.,

∇ξv = e2(f)∇e1ξ − e1(f)∇e2ξ = −e1(f)(1− µ)e1 − e2(f)(1 + µ)e2.

By comparing with (3.3), we arrive at

{
ξ(e2(f)) = −(a + 1− µ)e1(f),
ξ(e1(f)) = (1 + µ− a)e2(f).

(3.7)

It follows from (3.6) and (3.7) that e1(f) = e2(f) = 0. Thus f is constant and v = fξ.
By Theorem 3.1, v is Killing, thus we find that ξ is also Killing, namely, M is K-contact,

so h = 0. It yields a contradiction, thus we complete the proof.
Next we apply Example 2.2 to check both Theorem 3.4 and Theorem 3.9.
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Example 3.10 We consider R2n+1 equipped with contact structure (φ, ξ, η, g) as in

Example 2.2. Let v =
n∑

i=1

(V i ∂
∂xi

+ V
i ∂
∂xi

) + V z ∂
∂z

be a φ∗-analytic vector field, then

φv =
n∑

i=1

(−V i ∂

∂yi

+ V
i ∂

∂xi

) +
n∑

i=1

yi
∂

∂z
.

If φv is also φ∗-analytic, we get

yi
∂V

i

∂yj

=
∂

∂yj

n∑
i=1

yi = 1 for all j.

But from the fourth equation of (2.10) we find V
j

= 1 for all j. It comes to a contradiction.
Thus φv can not be φ∗-analytic. It is consistent with the result of Theorem 3.4.

For the case of three dimension, if v is a φ∗-analytic vector field, then we shall prove
that v is a zero vector field. We know that the φ∗-analytic vector field can be written as
v = −φDf + fξ, thus a straightforward computation yields





V = −∂f
∂y

,

V = ∂f
∂x

,

−y ∂f
∂y

= 3
2
f.

(3.8)

By virtue of the fourth equation of (2.10) and the third equation of (3.8), we have

∂f

∂x
= −y

∂2f

∂x∂y
=

3
2

∂f

∂x
,

i.e., V = ∂f
∂x

= 0. Moreover, differentiating the third equation of (3.8) with respect to y gives

−∂f

∂y
− y

∂2f

∂y2
=

3
2

∂f

∂y
.

That means that V = −∂f
∂y

= 0 since the first equation of (3.8) and the second equation of

(2.10) imply ∂2f
∂y2 = −∂V

∂y
= ∂V

∂x
= 0. Further, we have f = 0 by using the third equation of

(3.8) again, i.e., v = 0, which concides with the conclusion of Theorem 3.9.
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11: 351–363.

[12] Takamatsu K. On a decomposition of an extended almost analytic vectors in a K-space with constant

scalar curvature[J]. Kodai Math. Sem. Rep., 1968, 20: 186–197.

[13] Yano K. Integral formula in Riemannian geometry[M]. New York: Macrcel Dekker, 1970.

[14] Yano K. Differential geometry on complex and almost complex spaces[M]. Oxford: Pergamon Press,

1965.

[15] Yano K, Ako M. Almost analytic vectors in almost complex spaces[J]. Tôhoku. Math. J., 1961, 13:
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近切触流形的φ∗-解析向量场

陈小民

(中国石油大学(北京)理学院,北京 102249)

摘要: 本文引入了近切触流形(M, φ, ξ, η, g)中φ∗-解析向量场的概念, 并研究了其性质. 利用近切触流

形的性质, 证明了切触度量流形中的φ∗-解析向量场v是Killing 向量场且φv不是φ∗-解析的. 特别地, 如果近

切触流形M是正规的, 得到v与ξ 平行且模长为常数. 另外, 证明了3维的切触度量流形不存在非零的φ∗-解析

向量场.
关键词: φ∗-解析向量场; Killing向量场; 近切触结构; 切触度量流形; Sasaki流形
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