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Abstract: In this article, we introduce the conception of ¢*-analytic vector field in almost
contact manifold (M, ¢,&,1n,g) and study its properties. Making use of the properties of almost
contact manifold, we prove that in a contact metric manifold the ¢*-analytic vector field v is Killing,
and that ¢v must not be ¢*-analytic unless zero vector field. Particularly, if M is normal, we get
that v is collinear to £ with constant length, and for the case of three dimensional contact metric
manifold it is proved that there does not exist a non-zero ¢*-analytic vector field.
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1 Introduction

Tachiana [10, 11] introduced the conception of contravariant almost analytic vector
field in a certain almost Hermitian manifold based on the fact that on a compact Kéahler
manifold, the inner product of a contravariant vector field and a covariant vector field is
constant. Later, this conception was generalized to the general almost complex manifolds
by several mathematicians [8, 15]. Precisely, in an almost complex manifold M with almost
complex structure J a contravariant almost analytic vector field v is defined by L£,J = 0,
where £, denotes the Lie derivative along v. Further, Sawaki and Tamakatsu [9] in 1967
defined and studied an extended contravariant almost analytic vector v in an almost complex
manifold, namely, in a local orthonormal frame it satisfies £,J; +XJ7 N},v' = 0, here X is C*
scalar function and N}, is Nijenhuis tensor. In addition, Tamakatsu gave a decomposition of
this kind of vector fields [12].

As an odd dimensional analogue of contravariant almost analytic vector fields in an
almost complex manifold, Sato [7] defined a called contravariant C-analytic vector v in a
Sasakian manifold with (1, 1)-tensor ¢ by (L£,¢)¢ = 0. Following this definition, Eum and
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Kim [5] provided a definition of contravariant C*-analytic vector field v in a cosymplectic
manifold defined by

(Lod)p =0 and L& =0.

They obtained an unique decomposition of this vector field in compact cosymplectic 7-
Einstein manifolds. This result is the analogue of a contravariant analytic vector in a compact
Kahler space [14] and Sasakian manifold [7], respectively.

Besides, in [4] Deshmukh defined a called ¢-analytic vector field and studied the case
where the induced structure vector £ in real hypersurfaces of complex projective space C'P =
is ¢-analytic.

For an almost contact manifold with almost contact structure (¢, £, 7n), we may consider
a vector field v such that it leaves ¢ invariant, i.e., £,¢ = 0. By a simple calculation we
have £,£ = o€, where o is a smooth function. Particularly, Ghosh and Sharma proved that
o is constant in a contact metric manifold [6, Lemma 1].

Motivated by the above background, in the present paper we define a vector field called
¢*-analytic vector field, which leaves the (1,1)-tensor ¢ invariant and satisfies ¢ = 0 in
an almost contact metric manifold (see Def.2.1). In Section 2, we will give some basic

conceptions and properties, and the main results and proofs are showed in Section 3.

2 Definitions, Examples and Basic Properties

Let M?"*! be a (2n+1)-dimensional Riemannian manifold. An almost contact structure
on M is a triple (¢,&,n), where ¢ is a (1, 1)-tensor field, £ a unit vector field, n a one-form
dual to & satisfying

¢ =-T+n®E nop=0, ¢o&=0. (2.1)

A smooth manifold with such a structure is called an almost contact manifold. It is

well-known that there exists a Riemannian metric g such that
9(6X,¢Y) = g(X,Y) = n(X)n(Y) (2.2)
for any X,Y € X(M). It is easy to get from (2.1) and (2.2) that
9(¢X,Y) = —g(X,9Y), g(X,§) =n(X). (2.3)

Due to (2.3), we can decompose the tangent bundle of an almost contact manifold as the
orthonormal sum of the codimension 1 bundle D = kern and the 1-dimensional foliation
defined by &. An almost contact structure (¢,&,n) is said to be normal if the Nijenhuis

torsion
Ny(X,Y) = ¢*[X, Y] + [pX, 9Y] = ¢[¢pX, Y] — ¢[X, ¢Y] + 2dn(X,Y)¢ (2.4)

vanishes for any vector fields X,Y on M.
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A contact metric manifold is an almost contact manifold (M, ¢,&,n,g) such that the

metric g satisfies
dn(X,Y) = g(X, ¢Y), (2.5)

VX,Y € X(M). Moreover, it is well-known that there exists a (1,1)-tensor field h on a
contact manifold defined by h = £ L¢¢ and it satisfies

h§ =0, ¢h = —ho, (2.6)
Vi€ = —¢pX — AX, (2.7)

where A = ¢h.

From (2.5), we have £.1dn = 0, which means that & is a geodesic vector field (see [2,
Lemma 6.3.3]). If the structure vector field £ is Killing, then M is said to be K-contact. It
is easy to see that M is K-contact if and only if h = 0.

Also, if the Nijenhuis tensor of contact manifold Ny = 0 then it is said to be Sasakian,

and the following formula is also well-known for a Sasakian manifold (see [1])
(Vx@)Y =g(X,Y)§ —n(Y)X. (2.8)

Moreover, we know that a Sasakian manifold is automatically K-contact and in general the
converse is not true, but a three dimensional K-contact manifold is always Sasakian.
Definition 2.1 A vector field v in an almost contact manifold (M, ¢, £, n,g) is called

¢*-analytic vector field if it satisfies
L,£=0 and L,¢=0. (2.9)

Two equations of (2.9) are respectively equivalent to [v,&] = 0 and [v, pX| = ¢[v, X],
VX € X(M), where [-, -] denotes by the Lie bracket.

Next, we will give an example of ¢*-analytic vector field in almost contact manifold.

Example 2.2 Consider the (2n + 1)-dimensional Euclidean space R?"*! equipped with

the Cartesian coordinates (z1,: - ,Zn, Y1, " ,Yn, 7). Define the almost contact structure

(¢,€,m,9) by
0 0 0 0 0 0

o) 1 - 1
§:2$7 77=§(d2*§yid$i)a 9:77®77+ZZ((d$i)2+(dyi)2)-

=1

:0,

n

The ¢*-analytic vector field v can be written as v = Y (V2 + Vii) +V=Z. By (2.9),

T Ay
i=1
we derive that V? and V' do not depend on z and that the following PDEs hold

i i

ovi_ov. o ovi_ oV ovi oV
8xj 8yJ ’ Gy] al'j ’ ! ﬁyj ayj ’ (2 10)
7 ov oV ov _o

BT _yiayj’ 0z
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It is clear that there exists a non-zero solution V¢ = ¢, V= 0, V2 = H(xy, - ,2p),
WI}lere H is a smooth function on R?**! and c is a non-zero constant. Hence we see that

c 231 8%1- + H (21, ,2,)L is a ¢*-analytic vector field in (R*"*!, ¢, &,n, g).

For any an almost contact manifold, we have the following:

Proposition 2.3 For a ¢*-analytic vector field v in almost contact manifold (M, ¢, &, n, g),
the following identity holds: ¢(Vxv,&) + g(Vev, X) =0, VX € X(M).

Proof From the definition of the ¢*-analytic vector field we know [£,v] = 0, i.e.,

V& = Vev. Using (2.1), a straightforward computation yields
[0 X, v] = Vgaxv — V, (¢°X) = =Vxv+ V, X — n(V,X)¢ — g(Vev, X)E.
On the other hand,
$[¢X,v] = ¢*(Vxv — V,X) = =Vxv + V. X + n(Vxv)¢ — n(V,X)E.

Then by replacing X by ¢X in (2.9) and comparing the previous two equations, we complete
the proof.

Write f = g(§,v), which is a smooth function, then the following corollaries are easy to
obtain from Proposition 2.3.

Corollary 2.4 If (M, $,&,7,9) is an almost contact manifold with ¢*-analytic vector
field v, then v(f) = 0. In particular, if v € D the integral curves of £ are geodesics.

Proof The first assertion is obvious by making use of Proposition 2.3 with X = v. If
v € D, then from Proposition 2.3 with X = ¢, we have g(v, V¢&) = 0, i.e., Ve& € Span{¢},
so V& = 0.

Corollary 2.5 Let v be a ¢*-analytic vector in almost contact manifold (M, ¢,&,n, g).
If 7 is closed, then f is constant.

Proof Applying Proposition 2.3, for any vector field X, we have

dn(X,v) = X (n(v)) —v(n(X)) = n([X,v]) = g(v, Vx&) — g(X, Vev) = X(f).

Corollary 2.6 Let (M, ¢,n,&, g) be a contact metric manifold with ¢*-analytic field v.
Then V,& — ¢V4,§ = —2¢v and £(f) = 0.
Proof Using (2.7) for X = v and X = ¢v, respectively, we have

Vo€ =—¢pv—Av, V4§ =v— f€— Ago.

Therefore it completes the proof the first assertion in view of (2.6) and the above two
equations.
On other hand, in terms of Proposition 2.3 with X = ¢, we have g(V¢v,§) = 0, that is,

£(f)=0.
3 Main Results and Proofs

In this section, we shall suppose that (M, ¢,&,n, g) is always a contact metric manifold.
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Theorem 3.1 A ¢*-analytic vector field v in a contact metric manifold M is Killing.

Proof In view of Proposition 2.3, for any X € X(M), we have
(vadn)(X) = dn(v, X) = =X(f),

which means that vadn = —df. Thus L,dn = d(vadn) = 0. Since for a contact metric
manifold the associated metric g may write as dno (¢ @ I) +717 ® n by (2.5), where I is the
identical map on TM, we get L,g = dn o (L,¢ @ I). Therefore we complete the proof from
(2.9).

Remark 3.2 In fact, a Killing vector field is not necessary ¢*-analytic, however, in
particular, if the structure vector field £ is Killing then the converse of Theorem 3.1 is valid
(see [2, Proposition 6.6.12]).

From [13, Theorem 3.4], we have

Corollary 3.3 The ¢*-analytic vector field v in contact metric manifold satisfies
Av+Quv = 0, here A and @ denote by the Laplace operator and Ricci operator, respectively.

Next we will prove the following conclusion.

Theorem 3.4 Let (M, $,n,&, g) be a contact metric manifold with ¢*-analytic field v.
Then ¢v must be not a ¢*-analytic vector field unless zero vector.

To prove this theorem we need the following two lemmas.

Lemma 3.5 Under the assumption of Theorem 3.4, if ¢v is also a ¢*-analytic vector
field, then Vv = —¢v.

Proof Since vudn = —df, using (2.5) we have ¢v = Df, where D denotes by the
gradient operator. Thus if ¢v is ¢*-analytic, [¢ X, Df] = ¢[X, Df] for any X € X(M), which
implies [£, Df] = 0. Tt reduces that hv = 0 from the definition of h. Hence we complete the
proof in terms of (2.7).

Lemma 3.6 Under the assumption of Theorem 3.4, if ¢v is also a ¢*-analytic vector

field then
(VX¢)U = g(v,X)f - fX

Proof For any contact metric manifold the following identity (see [2, Lemma 7.3.2])
holds

29((Vx9)Y, Z) = g(Ny(Y, 2), pX) + 2dn(¢Y, X)n(Z) — 2dn(¢Z, X)n(Y')

for any XY, Z € X(M).

Since v and ¢v are ¢*-analytic vector fields, we obtain

29((Vx9)v,Y) = g(Ny(v,Y), X)) + 2dn(¢v, X)n(Y) — 2dn(¢Y, X)n(v)
= 9((Lyu®)Y + (L)Y, 0X) — 29(¢%v, X)n(Y) + 29(6°Y, X )n(v)
= —29(¢%0, X)n(Y) + 29(6°Y, X)(v).

Hence
(Vxp)v = —g(¢*v, X)E 4+ n(v)¢*X = g(v, X )¢ — fX.
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Proof of Theorem 3.4 We assume that ¢v is also a ¢*-analytic vector field, then ¢v
is also Killing because of Theorem 3.1, namely, for any X, Y € X(M), we have

9(Vx(¢0),Y) + g(Vy (¢v), X) = 0.
Making use of Lemma 3.6, we obtain
g9(0, X)n(Y) + g(v, Y)n(X) = 2fg(X,Y) + g(¢Vxv,Y) — g(Vyv,pX) = 0.
Hence using Theorem 3.1 gives
g(v, X)E+n(X)v —2fX +¢Vxv+ Vyxv =0. (3.1)

By replacing ¢X by X in (3.1) and using Lemma 3.5, we get

9(v,0X)§ = 2fpX + ¢Vyxv — Vxv —n(X)pv = 0. (32)
Operating ¢ onto (3.2) and using Proposition 2.3, we have

2fX —4fn(X)§ = Voxv + g(v, X)§ — ¢V xv +n(X)v =0.

Thus by comparing with (3.1) it yields that 2fn(X)¢ — g(v,X){ — n(X)v = 0 for any
X € X(M), which implies ¢*v = 0 by taking X = ¢ in the above formula. So ¢v must be
identically zero. We complete the proof.

For the case where M is a normal contact metric manifold, i.e., a Sasakian manifold,
we have

Theorem 3.7 Let v be a ¢*-analytic vector field in a Sasakian manifold. Then f =
g(v, &) is constant and v is collinear to £ with constant length.

Proof In the proof of Theorem 3.1, we have known vudn = —df. Since M is Sasakian,
Ny = 0. Thus it follows from (2.4) and (2.9) that N,(X,v) = 2dn(X,v)¢ = 0 for every field
X, that means that df = 0.

On the other hand, from (2.5) and Proposition 2.3, we know that ¢v = Df. Hence
v=—¢Df+ f€ = fE. We complete the proof of theorem.

At last we consider that M is a three dimensional contact metric manifold. Let U be the
open subset where the tensor h # 0 and U’ be the open subset such that h is identically zero.
Thus U U U’ is open dense in M. Assume that M is non-K-contact, then U is non-empty
and there exits a local orthonormal frame field £ = {e1,es = ¢eq,&} such that hey = pe;
and hey = —pes, where i is a positive non-vanishing smooth function of M. With respect
to the frame field, we have

Lemma 3.8 [3] Let (M3, ¢,7,&,g) be a contact metric manifold. Then with respect to

& the Levi-Civita connection V is given by

velel = b627 v6162 = —b61 + (1 + M)£7 vmé~ = _(1 + /1’)627
Ve,1 = —ces + (u—1)§, Ve,ea = ceq, Ve, & = (1 — pe,
Vgel = —aey, V§€2 = aeq, V§£ = O,
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where a,b and ¢ are smooth functions.

Theorem 3.9 There does not exist a non-zero ¢*-analytic vector field in a three
dimensional contact metric manifold.

Proof First, for &, e3 = £ is globally defined, thus we can define the global frame field,
still denoted by {ei, e, e3 = £}, by lifting to the universal covering space M3 if necessary.
Since v = —¢D f + f€, with respect to the orthonormal frame field £, v can be also written

as v = ea(f)er —ei1(f)es + fE. In view of Lemma 3.8 and Corollary 2.6, we compute
Vev = £(e2(f))er + e2(f)Veer — Elea(f))e2 + en(f) Vees

)
= &(ea(f))er — aea(flea —E(er(f))ea + aer(f)es (3.3)
lea() +aer(£) Jer = (aealf) + E(er(F) ) s

Similarly, we have

Vo = |ealealh) + bes(F)er + |bealf) = ex(ea() = Flu+ Dea —ea(Hus (3.4)
and
Ve = |eafeaf)) = cer(f) + F(L = p)]er = [eal e+ ealer()] 2 + eal s (3:5)
By Theorem 3.1, we know
9(Vev,er) +9(Ve,v,6) =0, g(Vev, ) +9(Ve,0,€) = 0.

Thus making use of (3.3), (3.4) and (3.5), we obtain

(-
On the other hand, we notice that for a ¢*-analytic vector field, Vev = V&, i.e.,
Vev = o) Ve, € = sV = s (1)1 = per = a1+ e
By comparing with (3.3), we arrive at
{ E(ea(f)) = ~(a+ 1= per(f), 57
Ser(f) = (14 p—a)ea(f).

It follows from (3.6) and (3.7) that e;(f) = e2(f) = 0. Thus f is constant and v = f§.

By Theorem 3.1, v is Killing, thus we find that ¢ is also Killing, namely, M is K-contact,
so h = 0. It yields a contradiction, thus we complete the proof.

Next we apply Example 2.2 to check both Theorem 3.4 and Theorem 3.9.
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Example 3.10 We consider R*"*! equipped with contact structure (¢, &, 7,g) as in
Example 2.2. Let v = Z(Via%i + Vzﬁ) + VZ% be a ¢*-analytic vector field, then

i=1 ‘

N B NG
gv=> (-V otV 8mi)+;yiaz'

i=1
If ¢uv is also ¢*-analytic, we get

V0
Yi— = — y; =1 forall j.
dy; Oy, 2

i=1

But from the fourth equation of (2.10) we find V' =1 for all j. It comes to a contradiction.
Thus ¢v can not be ¢*-analytic. It is consistent with the result of Theorem 3.4.

For the case of three dimension, if v is a ¢*-analytic vector field, then we shall prove
that v is a zero vector field. We know that the ¢*-analytic vector field can be written as
v=—¢Df + f€ thus a straightforward computation yields

By virtue of the fourth equation of (2.10) and the third equation of (3.8), we have

of __ of _30f
or y8x8y728x’

ie, V= %z = 0. Moreover, differentiating the third equation of (3.8) with respect to y gives

of  0*f 30f

ay oy " 20y

That means that V = _% = 0 since the first equation of (3.8) and the second equation of
(2.10) imply gj/; = —%—‘; = %—Z = 0. Further, we have f = 0 by using the third equation of

(3.8) again, i.e., v = 0, which concides with the conclusion of Theorem 3.9.
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