引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 21次   下载 0  
分享到: 微信 更多
有限域上一类高次方程的解
钟可欣, 夏永波
中南民族大学
摘要:
设$m$是正整数, $\mathbb{F}_{2^{3m}}$是含有$2^{3m}$个元素的有限域. 本文研究了有限域$\mathbb{F}_{2^{3m}}$上的如下方程 \begin{equation*} x^{2^{2m}}+ax^{2^{m}}+bx=0, \end{equation*} 其中$a,b\in\mathbb{F}^{\ast}_{2^{3m}}$. 利用Bluher论文有关定理及线性化多项式、置换多项式的相关结论, 本文确定了方程解的个数, 并刻画了相应解数时$a,b$所要满足的条件. 所得结果在序列的相关性研究、编码的构造研究及密码函数的差分性质研究中有潜在的应用.
关键词:  有限域  线性化多项式  置换多项式  高次方程
DOI:
分类号:O156.1
基金项目:国家自然科学基金资助项目(62171479);中南民族大学中央高校基本科研业务费专项资金项目(CZZ25008)
Solutions for a Higher-Degree Equation over Finite Fields
zhongkexin, xiayongbo
South-Central Minzu University
Abstract:
Let $m$ be a positive integer and $\mathbb{F}_{2^{3m}}$ the finite field with $2^{3m}$ elements. We investigates the following equation over the finite field $\mathbb{F}_{2^{3m}}$ \begin{equation*} x^{2^{2m}}+ax^{2^{m}}+bx=0, \end{equation*} where $a,b\in\mathbb{F}^{\ast}_{2^{3m}}$. By applying relevant theorems from Bluher's work and properties of linearized polynomials and permutation polynomials, we determine the number of solutions to the above equation and characterize the conditions on $a$ and $b$ for each possible solution count. The result may have potential applications in the study of the correlation properties of certain sequences, code constructions, and differential properties of cryptographic functions.
Key words:  Finite field  linearized polynomial  permutation polynomial  equation of higher degree