引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 32次   下载 0  
分享到: 微信 更多
带Navier边界条件的重漂移Laplace算子的第一特征值
孙和军, 肖梦格, 王琳琳
南京理工大学
摘要:
本文考虑了如下具有Navier边界的紧致光滑度量测度空间上重漂移Laplace算子的buckling问题和夹板振动问题: $$\left\{\begin{aligned} &\Delta_f^2 u=-\Gamma\Delta_f u,&& \mbox{in}\;\;M,\\ &u=(1-\sigma)\dfrac{\partial^2 u}{\partial v^2}+\sigma \Delta u=0,&& \mbox{on}\;\;\partial M \end{aligned}\right.$$ 和 $$\left\{\begin{aligned} &\Delta^2_f u-\tau\Delta_f u=\Gamma u,&& \mbox{in}\;\; M,\\ &u=(1-\sigma)\dfrac{\partial^2 u}{\partial v^2}+\sigma\Delta u=0,&& \mbox{on}\;\;\partial M, \end{aligned}\right.$$ 其中,$\tau$是一个非负常数,且$0\leq \sigma<1$. 我们获得了这两类问题的第一特征值的下界估计. 我们的结果包含了前人关于具有Dirichlet边界条件的重漂移Laplace算子的夹持薄板问题和buckling问题的相关结果.
关键词:  重漂移Laplace算子; 第一特征值  Navier边界; buckling问题; 夹板振动问题
DOI:
分类号:O186.1
基金项目:
THE FIRST EIGENVALUES OF THE BI-DRIFTING LAPLACIAN WITH THE NAVIER BOUNDARY CONDITION
Sun He-jun
Nanjing University of Science and Technology
Abstract:
In this paper, we investigate the buckling problem and the vibration problem of the bi-drifting Laplacian $\Delta^2_f$ on a compact smooth metric measure space $(M,g,f)$ with the Navier boundary as follows $$\left\{\begin{aligned} &\Delta_f^2 u=-\Gamma\Delta_f u,&& \mbox{in}\;\;M,\\ &u=(1-\sigma)\dfrac{\partial^2 u}{\partial v^2}+\sigma \Delta u=0,&& \mbox{on}\;\;\partial M \end{aligned}\right.$$ and $$\left\{\begin{aligned} &\Delta^2_f u-\tau\Delta_f u=\Gamma u,&& \mbox{in}\;\; M,\\ &u=(1-\sigma)\dfrac{\partial^2 u}{\partial v^2}+\sigma\Delta u=0,&&\mbox{on}\;\;\partial M, \end{aligned}\right.$$ where $\tau$ is a non-negative constant and $0\leq \sigma<1$. We obtain some lower bounds for the first eigenvalues of these two problems. Moreover, our results cover some previous results for the clamped plate problem and buckling problem of the bi-drifting Laplacian with the Dirichlet boundary condition.
Key words:  bi-drifting Laplacian  the first eigenvalue  Navier boundary  buckling problem  vibration problem