引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 83次   下载 0  
分享到: 微信 更多
压缩秩1投影对联合数值 域的映射
李阳, 陈少波
重庆师范大学
摘要:
设 $\mathcal{H}$ 为 复Hilbert空间, $\Phi$ 为 $\mathcal{H}$ 中秩 $1$ 投影上的映射,并且压缩秩 $1$ 投影对的联合数值域.我们证明了当 $\mathrm{dim} (\mathcal{H}) > 2$ 且$\Phi$ 为满射时,$\Phi$ 由一个酉算子或反酉算子诱导; 当 $\mathrm{dim} (\mathcal{H})= 2$时, $\Phi$ 为满射, 此时 $\Phi$ 仍由一个酉算子或反酉算子诱导.
关键词:  投影对  压缩联合数值域  酉算子  反酉算子
DOI:
分类号:O23
基金项目:
Mapping shrinking the joint numerical range of any pair of rank 1 projections
Li Yang, Chen Shaobo
Chongqing Normal University
Abstract:
Let $\mathcal{H}$ be a complex Hilbert space. Assume that $\Phi$ is a map on the set of rank 1 projections acting on $\mathcal{H}$ and shrinks the joint numerical range of any pair of rank 1 projections. We show that if $\mathrm{dim}(\mathcal{H}) > 2$ and $\Phi$ is surjective, then $\Phi$ is induced by a unitary or an anti-unitary; if $\mathrm{dim}(\mathcal{H}) = 2$, then $\Phi$ is surjective, and we prove that $\Phi$ is still induced by a unitary or an anti-unitary.
Key words:  Pair of projection  Shrinking joint numerical range  Unitary  Anti-unitary