引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 52次   下载 0  
分享到: 微信 更多
图上无界拉普拉斯算子非线性抛物方程解的存在性和爆破现象
黄大伟, 朱立平
西安建筑科技大学理学院
摘要:
针对局部有限图上无界拉普拉斯算子非线性抛物方程ut = ?u + h(x)f(u)(t, x), 本文首 先利用巴拿赫不动点定理证明了温和解在短时间内的存在唯一性; 其次, 通过巧妙地构造辅助函数, 在 图满足多项式增长条件和f满足适当的条件下, 利用热核估计证明了温和解会在有限时间内发生爆破.
关键词:  无界拉普拉斯算子  爆破解  抛物方程
DOI:
分类号:O175.26
基金项目:
THE EXISTENCE OF SOLUTIONS AND BLOW-UP PHENOMENON TO THE PARABOLIC EQUATION FOR UNBONDEN LAPLACIANS ON THE GRAPHS
Huang Dawei, Zhu Liping
College of Science, Xi’an University of Architecture and Technology
Abstract:
For the nonlinear parabolic equation with unbounded Laplacian on locally finite graphs ut = ?u + h(x)f(u)(t, x), this paper first establishes the existence and uniqueness of mild solutions in a short time interval by employing the Banach fixed-point theorem. Subsequently, under the condition that the graph satisfies polynomial growth and f meets appropriate assumptions, the paper proves that the mild solution will blow up in finite time by ingeniously constructing auxiliary functions and utilizing heat kernel estimates.
Key words:  unbounded Laplacians operator  blow-up solution  parabolic equation