引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 27次   下载 0  
分享到: 微信 更多
二维Benjamin-Ono-Zakharov-Kuznetsov 方程的柯西问题
杨洋,杨引,杨晗
西南交通大学
摘要:
本文研究二维Benjamin-Ono-Zakharov-Kuznetsov(BO-ZK)方程的柯西问题. 借助Esfahani等人关于BO-ZK方程相应线性问题的Strichartz估计. 使用半群理论,运用Littlewood-Paley分解技术,使用交换子估计,将方程的非线性项分为不同频率的成分,得到了方程解的高阶估计. 结合能量估计,构造光滑解的序列,在低正则Sobolev空间 H^s(R^2)(s>11/8)中证明了方程解的局部适定性,从而丰富了BO-ZK方程柯西问题的相关结论.
关键词:  BO-ZK方程  柯西问题  低正则性解  局部适定性
DOI:
分类号:O175.29
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
The cauchy problem for the two-dimensional Benjamin-Ono-Zakharov-Kuznetsov equation
yangyang1, yanghan2
1.西南交通大学;2.Southwest Jiaotong University
Abstract:
This paper studies the Cauchy problem for the two-dimensional Benjamin-Ono-Zakharov-Kuznetsov (BO-ZK) equation. With the help of the Strichartz estimates established by Esfahani et al. for the corresponding linear problem of the BO-ZK equation, we employ semigroup theory, Littlewood-Paley decomposition techniques, and commutator estimates to decompose the nonlinear term of the equation into components of different frequencies, thereby obtaining higher-order estimates for the solutions. Combining energy estimates, we construct a sequence of smooth solutions and prove the local well-posedness of the equation in low-regularity Sobolev spaces H^s(R^2) (s > 11/8) . This work enriches the existing conclusions related to the Cauchy problem of the BO-ZK equation.
Key words:  BO-ZK equation  Cauchy problem  Low regularity solutions  local well-posedness