| 摘要: |
| 本文研究二维Benjamin-Ono-Zakharov-Kuznetsov(BO-ZK)方程的柯西问题. 借助Esfahani等人关于BO-ZK方程相应线性问题的Strichartz估计. 使用半群理论,运用Littlewood-Paley分解技术,使用交换子估计,将方程的非线性项分为不同频率的成分,得到了方程解的高阶估计. 结合能量估计,构造光滑解的序列,在低正则Sobolev空间 H^s(R^2)(s>11/8)中证明了方程解的局部适定性,从而丰富了BO-ZK方程柯西问题的相关结论. |
| 关键词: BO-ZK方程 柯西问题 低正则性解 局部适定性 |
| DOI: |
| 分类号:O175.29 |
| 基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目) |
|
| The cauchy problem for the two-dimensional Benjamin-Ono-Zakharov-Kuznetsov equation |
|
yangyang1, yanghan2
|
|
1.西南交通大学;2.Southwest Jiaotong University
|
| Abstract: |
| This paper studies the Cauchy problem for the two-dimensional Benjamin-Ono-Zakharov-Kuznetsov (BO-ZK) equation. With the help of the Strichartz estimates established by Esfahani et al. for the corresponding linear problem of the BO-ZK equation, we employ semigroup theory, Littlewood-Paley decomposition techniques, and commutator estimates to decompose the nonlinear term of the equation into components of different frequencies, thereby obtaining higher-order estimates for the solutions. Combining energy estimates, we construct a sequence of smooth solutions and prove the local well-posedness of the equation in low-regularity Sobolev spaces H^s(R^2) (s > 11/8) . This work enriches the existing conclusions related to the Cauchy problem of the BO-ZK equation. |
| Key words: BO-ZK equation Cauchy problem Low regularity solutions local well-posedness |