引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 3次   下载   
分享到: 微信 更多
一类多维随机微分方程的对数截断EM方法
黄永杰,赵君一郎
作者单位E-mail
黄永杰 西南交通大学 huangyj@my.swjtu.edu.cn 
赵君一郎 西南交通大学  
摘要:
Tang和Mao在[1]中建立了对数截断Euler-Maruyama方法,该方法是一种具有竞争力的保正性显式数值算法。 然而,其理论假设是限制性的,仅适用于标量随机微分方程(SDE),限制了多维情形的应用。本文旨在通过修正原假设条件,将这一方法推广至多维SDE,并建立其强收敛性结果。具体而言,若SDE对足够大的 p 阶矩存在有限性,则多维SDE的对数截断Euler-Maruyama方法将保持与标量情形一致的强收敛阶率(1/2阶)。
关键词:  多维随机微分方程  保正性  对数截断EM方法  数值模拟
DOI:
分类号:O241
基金项目:
Logarithmic truncated EM Method for a Class of Multi-dimensional Stochastic Differential Equations
Huang Yongjie,赵君一郎
Abstract:
Tang and Mao in [1] established the logarithmic truncation Euler-Maruyama method for scalar SDEs, which is a competitive positivity preserving explicit numerical method. However, assumptions for the logarithmic truncated Euler-Maruyama method used in their work are restrictive which exclude multi-dimensional SDEs. The main purpose of this paper is to modify the assumptions, extend the logarithmic truncated EM method to multi-dimensional SDEs and establish a strong convergence result. Specifically, if the SDE admits finite p-th moments for sufficiently large $p$, the logarithmic truncated EM method for multi-dimensional SDEs retains the same strong convergence rate of order 1/2 as in the scalar case.
Key words:  Multi-dimensional Stochastic differential equations  Positivity preserving  The logarithmic truncated EM Method  Numerical simulation