|
摘要: |
这篇文章主要是采用切比雪夫谱方法求解Cahn-Hilliard方程,并引入该方程的三种不同的数值格式:半隐式格式,一阶稳定化半隐格式,二阶稳定化半隐格式。并用切比雪夫谱方法进行空间离散,在时间上用半隐式方法离散,得到Cahn-Hilliard方程的数值离散格式。在数值实验中,验证了当数值解达到稳定时,对于不同的稳定化常数S,稳定格式所需时间步长相较于非稳定格式的1000倍,即验证了该方法的有效性。 |
关键词: Cahn-Hilliard方程 一阶稳定化半隐格式 二阶稳定化半隐格式 切比雪夫谱方法 |
DOI: |
分类号:O241.82 |
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目) |
|
The stabilized semi-implicit Chebyshev spectral method for the Cahn-Hilliard equation |
tang shu juan,luo xian bing
|
Abstract: |
This study primarily employs the Chebyshev spectral method to solve the Cahn-Hilliard equation and introduces three distinct numerical schemes for this equation: the semi-implicit scheme, the first-order stabilized semi-implicit scheme, and the second-order stabilized semi-implicit scheme. The Cahn-Hilliard equation is discretized in space using the Chebyshev spectral method and in time using a semi-implicit scheme, yielding its numerical discretization. Numerical experiments confirm that, at steady state, the stabilized scheme permits a time step 1000 times greater than the non-stabilized version under varying stabilization constants S, validating the method's efficacy. |
Key words: Cahn-Hilliard equation first-order stabilized semi-implicit scheme second-order stabilized semi-implicit scheme Chebyshev spectral method semi-implicit scheme. |