|
摘要: |
本文研究了定义在R+×[0, 1]d上具有高频振荡随机位势,带齐次Neumann边界条件的半线性抛物型随机偏微分方程组(SPDEs)的齐次化问题,其中d=1, 2或3,利用正则结构理论,主要结论是方程组的解将依概率收敛到一个确定性抛物型PDEs的解. |
关键词: 半线性抛物型SPDEs 高频振荡 齐次化问题 正则结构 |
DOI: |
分类号:O211.63 |
基金项目:浙江省自然科学基金(LY20A010010). |
|
HOMOGENIZATION PROBLEM OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS |
SUN Zi-jian,MA Fei-yao
|
Abstract: |
In this paper, we study the homogenization problem of semilinear parabolic stochastic partial differential equations( SPDEs) with homogeneous Neumann boundary conditions defined on R+×[0, 1]d with high-frequency oscillatory random potential, where d = 1, 2 or 3,by using regularity structures, the main conclusion is that the solution of the system of equations will converge to the solution of a deterministic parabolic PDEs in probability. |
Key words: semilinear parabolic SPDEs high-frequency oscillatory homogenization problem regularity structures |