引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 539次   下载 1214 本文二维码信息
码上扫一扫!
分享到: 微信 更多
约化环上可分解为三个三幂等矩阵之和的矩阵
黄涛1, 崔建1,2, 曾月迪2
1.安徽师范大学数学与统计学院, 安徽 芜湖 241002;2.金融数学福建省高校重点实验室(莆田学院), 福建 莆田 351100
摘要:
本文研究了每个元素均可表示为三个互相交换的三幂等元之和的约化环,给出了整环上任意n阶矩阵均可表示为三个三幂等矩阵之和的判定条件, 证明了对于整环 R, Mn(R) 中任意矩阵可分解为三个三幂等矩阵之和当且仅当R≌Zp, 其中p=2, 3, 5或7.
关键词:  三幂等元  友矩阵  约化环  矩阵环
DOI:
分类号:O153.3
基金项目:
MATRICES OVER A REDUCED RING AS SUMS OF THREE TRIPOTENTS
HUANG Tao1, CUI Jian1,2, ZENG Yue-di2
1.School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, China;2.Key Laboratory of Financial Mathematics (Putian University), Fujian Province University, Putian 351100, China
Abstract:
In this paper, we study reduced rings in which every element is a sum of three tripotents that commute, and determine the integral domains over which every n×n matrix is a sum of three tripotents. It is proved that for an integral domain R,, every matrix in Mn(R) is a sum of three tripotents if and only if R≌Zp with p=2, 3, 5 or 7.
Key words:  Tripotent  companion matrix  reduced ring  matrix ring