| 摘要: |
| 本文研究了瞬时脉冲接种与非瞬时脉冲接种效应的SIR传染病模型的问题.利用频闪映射和Floquet定理以及脉冲微分方程理论的方法,获得了模型无病周期解的存在性和疫苗接种的控制阈值的结果,推广了瞬时脉冲接种率与非瞬时脉冲接种区间长度对疾病灭绝起着重要作用的结论,为实际传染病控制提供了可靠的策略支持. |
| 关键词: 脉冲接种 非瞬时脉冲接种区间长度 疾病消除 |
| DOI: |
| 分类号:O175.13 |
| 基金项目:国家自然科学基金资助(11791019);贵州省微分-差分动力系统应用科技创新人才团队项目基金资助(20175658);贵州省高层次创新型人才(百层次)项目基金资助(20164035);贵州省教育厅创新群体重大项目基金资助(2018019). |
|
| DYNAMICS OF A NEW SIR EPIDEMIC MODEL WITH TRANSIENT/NON-TRANSIENT IMPULSIVE VACCINATION EFFECTS |
|
WANG Yuan1, JIAO Jian-jun1, QUAN Qi2
|
|
1.School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guizhou 550025, China;2.School of Mathematical Sciences, Guizhou Normal University, Guizhou 550025, China
|
| Abstract: |
| In this paper, we study the problem of epidemic model with transient/nontransient impulsive vaccination effects. Using the theories of stroboscopic map, Floquet and the theories of impulsive differential equations, we obtain the existence of infection-free periodic solution and the controlling thresholds of the vaccination. The results show that the transient impulsive vaccination rate and the length of non-transient impulsive vaccination effect interval played an important role in disease extinction. It provides a reliable strategy support for practical vaccination. |
| Key words: transient impulsive vaccination the length of non-transient impulsive vaccination effect interval disease extinction |