| 摘要: |
| 本文研究了一类非线性Klein-Gordon方程的初边值问题.通过引进能量泛函和与之对应的势井,采用Galerkin方法得到了解整体存在和爆破的充分条件,并给出了解爆破时生命跨度的上界估计. |
| 关键词: 非线性Klein-Gordon方程 Galerkin方法 整体解 爆破 生命跨度 |
| DOI: |
| 分类号:O175.29 |
| 基金项目:国家自然科学基金(71572156;11501395). |
|
| THE GLOBAL EXISTENCE AND BLOW-UP OF A CLASS OF NONLINEAR KLEIN-GORDON EQUATIONS |
|
ZHU Jia-ling, LI Yang, YANG Han
|
|
School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China
|
| Abstract: |
| The purpose of this work is to study the initial boundary value problem of a class of nonlinear Klein-Gordon equation. By introducing certain potential well, some sufficient conditions for the global existence and blow-up results to the solution are obtained. The upper bound of life span is given while the solution blows up. |
| Key words: nonlinear Klein-Gordon equation Galerkin method global solution blow up life span |