| 摘要: |
| 本文研究了具有负数量曲率的紧致黎曼流形上的Killing向量场.利用Bochner方法,得到在此类流形上非平凡的Killing向量场的存在的必要条件.这个结果拓广了文献[6]中的定理1. |
| 关键词: Killing向量场 负数量曲率 无迹Ricci曲率张量 |
| DOI: |
| 分类号:O186.12 |
| 基金项目:Supported by the National Natural Science Foundations of China (11261038; 11361041). |
|
| KILLING VECTOR FIELDS ON COMPACT RIEMANNIAN MANIFOLDS WITH NEGATIVE SCALAR CURVATURE |
|
FU Hai-ping1, DAN Ping-ping1, PENG Xiao-yun2
|
|
1.Department of Mathematics, Nanchang University, Nanchang 330031, China;2.Jiangxi Tax Cadre School, Nanchang 330029, China
|
| Abstract: |
| In this paper, we investigate killing vector fields on compact Riemannian manifolds with negative scalar curvature. By using the Bochner method, we obtain a necessary condition of the existence of non-trivial killing vector fields on these manifolds, which extends Theorem 1 due to[6]. |
| Key words: killing vector field negative scalar curvature trace-free Ricci curvature tensor |