引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2991次   下载 3312 本文二维码信息
码上扫一扫!
分享到: 微信 更多
具有负数量曲率的紧致黎曼流形的Killing向量场
付海平1, 但萍萍1, 彭晓芸2
1.南昌大学数学系, 江西 南昌 330031;2.江西省税务干部学校, 江西 南昌 330029
摘要:
本文研究了具有负数量曲率的紧致黎曼流形上的Killing向量场.利用Bochner方法,得到在此类流形上非平凡的Killing向量场的存在的必要条件.这个结果拓广了文献[6]中的定理1.
关键词:  Killing向量场  负数量曲率  无迹Ricci曲率张量
DOI:
分类号:O186.12
基金项目:Supported by the National Natural Science Foundations of China (11261038; 11361041).
KILLING VECTOR FIELDS ON COMPACT RIEMANNIAN MANIFOLDS WITH NEGATIVE SCALAR CURVATURE
FU Hai-ping1, DAN Ping-ping1, PENG Xiao-yun2
1.Department of Mathematics, Nanchang University, Nanchang 330031, China;2.Jiangxi Tax Cadre School, Nanchang 330029, China
Abstract:
In this paper, we investigate killing vector fields on compact Riemannian manifolds with negative scalar curvature. By using the Bochner method, we obtain a necessary condition of the existence of non-trivial killing vector fields on these manifolds, which extends Theorem 1 due to[6].
Key words:  killing vector field  negative scalar curvature  trace-free Ricci curvature tensor