引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1700次   下载 1844 本文二维码信息
码上扫一扫!
分享到: 微信 更多
具混合边界的双曲微分方程在Lp(0,T;W1,p(Ω))空间中的研究
魏利,RAVI P. AGARWAL,PATRICIA J. Y. WONG
作者单位
魏利 河北经贸大学数学与统计学学院, 河北 石家庄 050061 
RAVI P. AGARWAL Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX 78363, USA;Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia 
PATRICIA J. Y. WONG School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore 
摘要:
本文研究了一类具混合边界的一般形式的双曲微分方程.利用分裂方程和Neumann边界条件的方法,借助于定义非线性算子,并利用Reich关于极大单调算子值域几乎相等的结论检验所定义算子具备某些性质的技巧,获得了双曲边值问题在Lp(0,T;W1,p(Ω))空间中存在唯一解的结果.基于双曲方程中的主项是非线性的,所以本文应用了新的证明技巧,推广和补充了以往的相关工作.
关键词:  严格单调算子  次微分  迹算子  值域几乎相等  双曲方程
DOI:
分类号:O177.91
基金项目:Supported by National Natural Science Foundation of China (11071053); Natural Science Foundation of Hebei Province (A2014207010); Key Project of Science and Research of Hebei Educational Department (ZH2012080) and Key Project of Science and Research of Hebei University of Economics and Business (2015KYZ03).
STUDY ON HYPERBOLIC DIFIERENTIAL EQUATION WITH MIXED BOUNDARIES
WEI Li,Ravi P. Agarwal,Patricia J. Y. Wong
Abstract:
In this paper, one kind of general form of hyperbolic differential equation with mixed boundaries is studied. By using the method of splitting the equation and the Neumann boundary condition respectively, and by defining some nonlinear operators and checking some properties of theirs in view of the result of almost equality of the ranges for maximal monotone operators presented by Reich, we prove that the hyperbolic boundary value problem has a unique solution in Lp(0,T;W1,p(Ω)). Some new techniques can be found since the main parts in the hyperbolic equation are nonlinear, which can be regarded as the complement and extension of the previous work.
Key words:  strictly monotone operator  subdifferential  trace operator  almost equality of the ranges  hyperbolic equation

美女图片

美女 美女美女 美女美女