| 摘要: | 
			 
		     | 本文研究了分段连续型微分方程x'(t)=ax(t)+bx(3[(t+1)/3]) Euler-Maclaurin方法的数值稳定性问题.利用特征分析的方法,获得了数值解稳定的充分条件,进而证明了Euler-Maclaurin方法保持了精确解的稳定性.最后给出了一些数值例子. | 
			
	         
				| 关键词:  Euler-Maclaurin方法  分段连续项  稳定性  数值解 | 
			 
                | DOI: | 
            
                | 分类号:O241.81 | 
			 
             
                | 基金项目:Supported by National Natural Science Foundation of China (11201084);China Postdoctoral Science Foundation (2013M531842) and Science and Technology Program of Guangzhou (2014KP000039). | 
          |  | 
           
                | NUMERICAL STABILITY ANALYSIS FOR EQUATION x'(t)=ax(t)+bx(3[(t+1)/3]) | 
           
			
                | WANG Qi, WANG Xiao-ming, CHEN Xue-song | 
           
		   
		   
                | School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China | 
		   
             
                | Abstract: | 
			
                | In this paper, we investigate the numerical stability of Euler-Maclaurin method for differential equation with piecewise constant arguments x'(t)=ax(t)+bx(3[(t+1)/3]). By the method of characteristic analysis, the sufficient conditions of stability for the numerical solution are obtained. Moreover, we show that the Euler-Maclaurin method preserves the stability of the exact solution. Finally, some numerical examples are given. | 
	       
                | Key words:  Euler-Maclaurin method  piecewise constant arguments  stability  numerical solution |