| 摘要: | 
			 
		     | 本文研究了Newton-Raphson 等算法无法进行时探寻更加稳定的数值解法的问题. 利用Böhning & Linday (1988) 提出的二次下界算法(Quadratic lower-bound), 文中在Logistic 回归模型下构造了极大似然函数的代理函数并进行数值模拟, 获得了二次下界算法是Newton-Raphson 算法的合理替代的结果, 推广了数值方法在Logistic 回归模型中的应用. | 
			
	         
				| 关键词:  minorization-maximization算法  Logistic回归模型  quadratic lower-bound算法  极大似然估计  Newton-Raphson算法 | 
			 
                | DOI: | 
            
                | 分类号:O212.1 | 
			 
             
                | 基金项目:国家自然科学基金(11101314). | 
          |  | 
           
                | QUADRATIC LOWER-BOUND ALGORITHM FOR MAXIMUM LIKELIHOOD ESTIMATOR OF LOGISTIC REGRESSION ON PARAMETER AND ITS APPLICATION | 
           
			
                | WANG Jia, DING Jie-li | 
           
		   
		   
                | School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China | 
		   
             
                | Abstract: | 
			
                | In this paper, we study how to explore more stable numerical solution when parameters cannot be solved by using Newton-Raphson algorithm. By using the quadratic lower bound algorithm that Böhning & Linday has proposed in 1988, we construct a surrogate function for maximum likelihood function under Logistic regression model and the simulation results verify that quadratic lower bound algorithm is a reasonable algorithm of Newton-Raphson algorithm, which extend numerical method's application under Logistic regression model. | 
	       
                | Key words:  minorization-maximization algorithm  Logistic regression model  quadratic lower-bound algorithm  maximum likelihood estimator  Newton-Raphson algorithm |