| 摘要: |
| 本文研究了一类带有p-Laplace算子的分数阶微分方程两点边值问题.利用锥上的不动点定理,得到了这类边值问题的特征区间,推广了整数阶边值问题情形的结论. |
| 关键词: 分数阶微分方程 p-Laplace算子 边值问题 |
| DOI: |
| 分类号:O175.8 |
| 基金项目:Supported by National Natural Science Foundation of China (11071014). |
|
| EIGENVALUE INTERVALS FOR FRACTIONAL BOUNDARY VALUE PROBLEMS WITH THE p-LAPLACIAN OPERATOR |
|
LU Yue-feng1, WANG Liang-tao1,2, Ding Fang-yun1,3
|
|
1.Canvard College, Beijing Technology and Business University, Beijing 101118, China;2.School of Mathematics and Information Science, Yantai University, Yantai 264000, China;3.School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
|
| Abstract: |
| In this paper,we study a two-point boundary value problem of fractional differential equations with the p-Laplacian operator.By using a fixed-point theorem on cones,we establish eigenvalue intervals of the problem,which generalizes the conclusions in the case of integer-order boundary value problems. |
| Key words: fractional differential equation p-Laplacian operator boundary value problem |