| 摘要: |
| 本文引入了拟-*-A(k)算子并研究其谱性质如下:(i)如果T是拟*-A(k)算子,其中0< k ≤ 1,则谱映射定理对T的本质近似点谱成立. (ii)如果T是拟*-A(k)算子,其中0< k ≤ 1,则σjα(T)\{0}=σα(T)\{0}.最后对*-A(k)算子的张量积性质也进行了讨论. |
| 关键词: 拟-*-A(k) 算子 单值扩展性质 联合近似点谱 张量积 |
| DOI: |
| 分类号:O177.2 |
| 基金项目:Supported by the Basic Science and Technological Frontier Project of Henan Province (132300410261). |
|
| A NOTE ON QUASI-*-A(K) OPERATORS |
|
ZUO Fei, ZUO Hong-liang, LI Wen
|
|
College of Math. and Inform. Sci., Henan Normal University, Xinxiang 453007, China
|
| Abstract: |
| In this note, we introduce quasi-*-A (k) operators and obtain their spectral properties as follows:(i) If T is quasi-*-A (k) for 0 < k ≤ 1, then the spectral mapping theorem holds for the essential approximate point spectrum. (ii) If T is quasi-*-A (k) for 0 < k ≤ 1, then σjα(T)\{0}=σα(T)\{0}. Besides, we consider tensor product of *-A (k) operators. |
| Key words: quasi-*-A(k) operators SVEP joint approximate point spectrum tensor product |