|
摘要: |
本文研究了一类随机时滞递归神经网络的指数稳定性问题.利用非负鞅收敛定理和Lyapunov泛函的方法,获得了这类神经网络矩指数稳定性的新的代数准则,所给代数准则简单易用.一个具体实例用来说明稳定性判别准则的应用. |
关键词: 随机递归神经网络 变时滞 矩指数稳定性 Lyapunov指数 |
DOI: |
分类号:O231.3 |
基金项目:Supported by National Natural Science Foundation of China(10971240); National Natural Science Foundation of Huaihai Institute of Technology (KK06004). |
|
EXPONENTIAL STABILITY OF A CLASS OFSTOCHASTIC DELAY RECURRENT NEURALNETWORK |
PAN Qing-fei,ZHANG Zi-fang
|
Abstract: |
The moment exponential stability for a stochastic delay recurrent neural networks is discussed by means of a nonnegative semi-martingale convergence theorem and Lyapunov functional method. The new algebraic criteria of the moment exponential stability for a stochastic delay recurrent neural network is derived, and these algebraic criteria are simple and practical. An example is also given for illustration. |
Key words: stochastic recurrent neural network time-varying delay moment exponential stability Lyapunov exponent |