引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1714次   下载 2045 本文二维码信息
码上扫一扫!
分享到: 微信 更多
无界意义下的在线变化分位数回归算法
汪宝彬1, 殷红2
1.中南民族大学数学与统计学学院, 湖北 武汉 430074;2.中国人民大学信息学院, 北京 100872
摘要:
本文研究了基于核方法下的在线变化损失函数的回归算法. 利用迭代和比较原则, 得到了算法的收敛速度, 并将该结果推广到了更一般的输出空间.
关键词:  分位数回归  Pinball损失函数  再生核希尔伯特空间  在线算法
DOI:
分类号:O211.6
基金项目:Supported by by the Special Fund of Basic Scientific Research of Central Colleges (CZQ13015) and the Teaching Research Fund of South-Central University for Nationalities (JYX13023)
VARYING QUANTILE REGRESSION WITH ONLINE SCHEME AND UNBOUNDED SAMPLING
WANG Bao-bin1, YIN Hong2
1.School of Mathematics and Statistics, Central South University for Nationalities, Wuhan 430074, China;2.School of Information, Renmin University of China, Beijing 100872, China
Abstract:
We consider a kernel-based online quantile regression algorithm associated with a sequence of insensitive pinball loss functions. By iteration method and comparison theorem, we obtain the error bound based on the more general output space.
Key words:  quantile regression  Pinball loss  reproducing kernel Hilbert space  online algo-rithm