数学杂志  2021, Vol. 41 Issue (3): 205-211   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
FENG Ting-fu
ZHANG Ke-lei
INTEGRABILITY AND BOUNDEDNESS OF MINIMIZERS FOR INTEGRAL FUNCTIONAL OF HÖRMANDER'S VECTOR FIELDS
FENG Ting-fu1, ZHANG Ke-lei2    
1. School of Mathematics, Kunming University, Kunming, Yunnan, 650214;
2. School of Mathematics and Computating Sciences, Guilin University of Electronic Science and Technology, Guilin, Guangxi, 541004
Abstract: The integral functional of Hörmander's vector fields is considered, by virtue of the Sobolev inequality related to Hörmander's vector fields and the iteration formula of Stampacchia, it is proved that the minimizers of integral functional have higher integrability with the boundary data allowing the higher integrability. Moreover, the L1(Ω) and L(Ω) boundedness of minimizers are also given, which extends the results of Leonetti and Siepe[12] and Leonetti and Petricca[13] from Euclidean spaces to Hörmander's vector fields.
Keywords: Hörmander's vector fields     Integral functional     Minimizers     Integrability     Boundedness    
Hörmander向量场型积分泛函的极小元的可积性和有界性
冯廷福1, 张克磊2    
1. 昆明学院数学学院, 云南 昆明 650214;
2. 桂林电子科技大学数学与计算科学学院, 广西 桂林 541004
摘要:本文考虑Hörmander向量场型积分泛函,当边界值具有更高可积性时,借助Hörmander向量场上的Sobolev不等式和Stampacchia的迭代公式证明此积分泛函的极小元也会有更高可积性.此外还得到极小元的L1(Ω)和L(Ω)有界性,从而把Leonetti和Siepe[12]以及Leonetti和Petricca[13]的结果从欧式空间延拓到Hörmander向量场.
关键词Hörmander向量场    积分泛函    极小元    可积性    有界性    
1 Introduction

We consider the integral functional of Hörmander's vector fields

$ \begin{equation}\label{eq1.1} I(u) = \int_\Omega {f(x, Xu(x))} dx, x \in \Omega , \end{equation} $ (1.1)

where $\Omega \subset {\mathbb{R}^n}(n\geq 3)$ is a bounded open set, $X = \left\{ {{X_1}, \cdots, {X_m}} \right\}$ $\left({m \geq n} \right)$ are ${C^\infty }$ vector fields in $\Omega $ satisfying the Hörmander's finite rank condition[11], rank Lie$\left[{{X_1}, \cdots, {X_m}} \right] = n, $ where ${X_j} = \sum\limits_{i = 1}^n {{b_{ij}}(x)\frac{\partial } {{\partial {x_i}}}}, {b_{ij}}(x) \in {C^\infty }(\Omega), j = {\text{1}}, {\text{ }} \cdots, m$. Note that, when $f\left({x, z} \right)$ in (1.1) is a Carathéodory function and satisfies the standard growth condition ${\left| z \right|^p} \leq f\left({x, z} \right) \leq c\left({1 + {{\left| z \right|}^p}} \right), 1 < p < Q, $ where $c$ is a positive constant, $Q$ is homogeneous dimension of $\Omega $ relative to $\left\{ {{X_1}, \cdots, {X_m}} \right\}$ and $Q \geq n$, Xu[16] proved the existence of minimizers of (1.1) by direct method and obtained Hölder continuity by Moser's method. Furthermore, Xu[17] obtained ${C^\infty }$ continuity by similar method. Afterwards, Giannetti[7] obtained higher integrability of the minimizers of (1.1) under the growth condition

$ \left| {f(\xi ) - f(\eta )} \right| \leq c\left| {\xi - \eta } \right|\left( {{{\left| \xi \right|}^{p - 1}} + {{\left| {\xi - \eta } \right|}^{p - 1}}} \right), 1 < p < Q. $

Namely, he proved $u \in W_{loc}^{1, p}(\Omega)$ if $u \in W_{loc}^{1, r}(\Omega), {r_{\text{1}}} \leq r < p, {\text{max}}\{ {\text{1}}, p - {\text{1}}\} < {r_{\text{1}}} < p.$ When $m = n$, $Xu = \left({\frac{{\partial u}} {{\partial {x_1}}}, \cdots, \frac{{\partial u}} {{\partial {x_n}}}} \right)$, (1.1) is an integral function in Euclidean spaces, the study on the regularity and boundedness of minimizers of such integral function can also be seen in [4, 8, 10].

In this paper we assume that $f\left({x, z} \right)$ in (1.1) is a Carathéodory function and satisfies the standard growth condition

$ \begin{equation}\label{eq1.2} {c_1}{\left| z \right|^p} - {g_1}(x) \leq f\left( {x, z} \right) \leq {c_2}{\left| z \right|^p} + {g_2}(x), 1 < p < Q, \end{equation} $ (1.2)

where ${c_1}$ and ${c_2}$ are positive constants, functions ${g_1}(x), {g_2}(x) \in {L^{\frac{1} {{1 - b}}}}(\Omega), b = \frac{{t - p}} {t}, 1 < p < t \leq q\leq Q$. By virtue of the Sobolev inequality (see Lemma 2.5) related to Hörmander's vector fields and the iteration formula of Stampacchia (see Lemma 2.6), it is proved that the minimizers of integral functional have higher integrability with the boundary data allowing the higher integrability. Moreover, the ${L^1 }(\Omega)$ and ${L^\infty }(\Omega)$ boundedness of minimizers are also given, which extends the results of Leonetti and Siepe[12] and Leonetti and Petricca[13] from Euclidean spaces to Hörmander's vector fields. Throughout this paper $c$ denotes the different positive constants in different places.

2 Main Results and Preliminary Knowledge

Definition 2.1[3, 6] For any $1 < p < Q$, Sobolev space ${W^{{\text{1}}, p}}\left(\Omega \right)$ is defined by

$ {W^{{\text{1}}, p}}\left( \Omega \right) = \left\{ {u \in {L^p}\left( \Omega \right), {X_j}u \in {L^p}\left( \Omega \right), j = {\text{1}}, {\text{ }} \cdots , m} \right\}, $

whose norm is ${\left\| u \right\|_{{W^{{\text{1}}, p}}\left(\Omega \right)}} = {\left({\int_\Omega {\left({{{\left| u \right|}^p} + {{\left| {Xu} \right|}^p}} \right)dx} } \right)^{\frac{1} {p}}}, $ where $\left| {Xu} \right| = {\left({\sum\limits_{j = 1}^m {{{\left({{X_j}u} \right)}^2}} } \right)^{\frac{1} {2}}}.$ We also denote the closure of $C_0^\infty (\Omega)$ in ${W^{{\text{1}}, p}}\left(\Omega \right)$ by $W_0^{1, p}(\Omega)$, whose norm is ${\left\| u \right\|_{W_0^{1, p}(\Omega)}} = {\left({\int_\Omega {{{\left| {Xu} \right|}^p}dx} } \right)^{\frac{1} {p}}}.$

Definition 2.2[1, 2, 9] The weak ${L^p}(\Omega)$ space which is also known as the Marcinkiewicz space, denoted by $L_{weak}^p(\Omega), $ is the set of all measurable functions $f(x)$ satisfying

$\begin{equation}\label{eq1.3} meas\left\{ {x \in \Omega :\left| {f(x)} \right| > {t_0}} \right\} \leq \frac{c} {{{t_0}^p}} \end{equation} $ (2.1)

for any ${t_0} > 0$ and some positive constants $c = c\left(f \right)$, where $meas{\kern 1pt} {\kern 1pt} E{\kern 1pt} $ denotes the $n$-dimensional Lebesgue measure of $E \subset {\mathbb{R}^n}$. If $f \in L_{weak}^p(\Omega)$, then $f \in {L^{{q_0}}}(\Omega)$ for any $1 \leq {q_0} < p$. Moreover, when $p = \infty $, it follows that $L_{weak}^\infty (\Omega) = {L^\infty }(\Omega)$.

Definition 2.3 A function $u \in {u_ * } + W_0^{1, p}(\Omega)$ is called a minimizer of (1.1) with the condition (1.2) if

$ \begin{equation}\label{eq1.4} \int_\Omega {f(x, Xu)dx} \leq \int_\Omega {f(x, Xw)dx} \end{equation} $ (2.2)

for any $w \in {u_ * } + W_0^{1, p}(\Omega)$, where ${u_ * }$ denotes the boundary data.

In this paper, our mian results are sated as follows.

Theorem 2.4 Let $u \in {u_ * } + W_0^{1, p}(\Omega)$ be a minimizer of (1.1) with the condition (1.2), where ${u_ * } \in {W^{1, q}}(\Omega), $ $1 < p < q \leq Q$. Suppose that ${g_1}(x), {g_2}(x) \in {L^{\frac{1} {{1 - b}}}}(\Omega), b = \frac{{t - p}} {t}, p < t \leq q$. Hence,

(ⅰ) (integrability) if $b < \frac{{Q - p}}{Q}$, then $u - {u_ * } \in L_{weak}^{\frac{{Qp}} {{Q - p - bQ}}}(\Omega), $ where $\frac{{Qp}} {{Q - p - bQ}} > {p^ * } = \frac{{Qp}} {{Q - p}} > p$;

(ⅱ) (${L^1 }(\Omega)$ boundedness) if $b = \frac{{Q - p}} {Q}$, then there exists a positive constant $\theta $ such that ${{e^{\theta \left| {u - {u_*}} \right|}} \in {L^1}(\Omega)}; $

(ⅲ) (${L^\infty }(\Omega)$ boundedness) if $b > \frac{{Q - p}} {Q}$, then $u - {u_ * } \in {L^\infty }(\Omega).$

Inspired by Leonetti and Siepe[12], for a minimizer $u$ of (1.1) with the condition (1.2), we can rewrite $u$ as $u = {u_ * } + (u - {u_ * }), $ our aim is to prove when the boundary datum ${u_ * }$ has the higher integrability, $u - {u_ * }$ also has the higher integrability. The following two lemmas are needed for the proof of Theorem 2.4.

Lemma 2.5[3, 6] Let $\Omega \subset {\mathbb{R}^n}$ be a bounded open set. Then for any $u \in W_0^{1, p}(\Omega), 1 < p < Q, $ there holds $W_0^{1, p}(\Omega) \subset {L^{{p^ * }}}(\Omega), $ where ${p^ * } = \frac{{Qp}} {{Q - p}}$, namely there exists a positive constant $c$ such that

$ {\left( {\int_\Omega {{{\left| u \right|}^{{p^ * }}}dx} } \right)^{\frac{1} {{{p^ * }}}}} \leq c{\left( {\int_\Omega {{{\left| {Xu} \right|}^p}dx} } \right)^{\frac{1} {p}}} $

for any $u \in W_0^{1, p}(\Omega), 1 < p < Q$.

Lemma 2.6[5, 14, 15] Let $\varphi (t)$ be a nonnegative and nonincreasing function on $\left[{{k_0}, + \infty } \right)$ satisfying $ \varphi (h) \le \frac{c}{{{{\left({h - k} \right)}^\alpha }}}{\left[{\varphi (k)} \right]^\beta }, h > k \ge {k_0}, $ where $c, \alpha$ and $\beta $ are positive constants. If $\beta < 1, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {k_0} > 0, $ then

$ \begin{equation}\label{eq1.5} \varphi (h) \le \left[ {{c^{\frac{1}{{1 - \beta }}}} + {{(2{k_0})}^{\frac{\alpha }{{1 - \beta }}}}\varphi ({k_0})} \right]{2^{\frac{\alpha }{{{{(1 - \beta )}^2}}}}}{\left( {\frac{1}{h}} \right)^{\frac{\alpha }{{1 - \beta }}}}; \end{equation} $ (2.3)

if $\beta {\rm{ = }}1, $ then

$ \begin{equation}\label{eq1.6} \varphi (h) \le {e^{1 - \tau (h - {k_0})}}\varphi ({k_0}), \end{equation} $ (2.4)

where $\tau = {\left({ec} \right)^{ - {\kern 1pt} \frac{1}{\alpha }}} > 0$; if $\beta > 1, $ then

$ \begin{equation}\label{eq1.7} \varphi ({k_0} + d) = 0, \end{equation} $ (2.5)

where $d = c{\left({\varphi ({k_0})} \right)^{\frac{{\beta - 1}}{\alpha }}}{2^{\frac{\beta }{{\beta - 1}}}}.$

3 Proof of Theorem 2.4

Proof of Theorem 2.4 For any $k \in \left({0, + \infty } \right)$, suppose that ${T_k}: \mathbb{R} \to \mathbb{R}$ is a function such that

$ \begin{equation}\label{eq1.8} {T_k}(u - {u_ * }) = \left\{ {\begin{array}{*{20}{c}} {u - {u_ * }, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left| {u - {u_ * }} \right| \leq k, } \\ {k\frac{{u - {u_ * }}} {{\left| {u - {u_ * }} \right|}}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left| {u - {u_ * }} \right| > k, } \\ \end{array} } \right. \end{equation} $ (3.1)

setting $\psi = u - {u_ * } - {T_k}(u - {u_ * })$, it follows from (3.1) that

$ \begin{equation}\label{eq1.9} \psi = \left\{ {\begin{array}{*{20}{c}} {u - {u_ * } + k, } \\ {0, } \\ {u - {u_ * } - k, } \\ \end{array} } \right.\begin{array}{*{20}{c}} {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} u - {u_ * } < - k, } \\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - k \leq u - {u_ * } \leq k, } \\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} u - {u_ * } > k.} \\ \end{array} \end{equation} $ (3.2)

Using $u \in {u_ * } + W_0^{1, p}(\Omega)$ and (3.2) we have $\psi \in W_0^{1, p}(\Omega)$ and

$ \begin{equation}\label{eq1.10} X\psi = (Xu - X{u_ * }){1_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}}}, \end{equation} $ (3.3)
$ \begin{equation}\label{eq1.11} {\kern 1pt} \left| \psi \right| = \left( {\left| {u - {u_ * }} \right| - k} \right){1_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}}}, \end{equation} $ (3.4)

where ${1_A}(x) = 1$ if $x \in A$, ${1_A}(x) = 0$ if $x \notin A$. Let us consider

$\begin{equation}\label{eq1.12} w = u - \psi , \end{equation} $ (3.5)

which implies $w \in {u_ * } + W_0^{1, p}(\Omega)$. By (3.3) and (3.5) we obtain

$ \begin{align}\label{eq1.13} Xw &= Xu-X\psi = Xu - (Xu - X{u_ * }){1_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}}} = Xu - (Xu){1_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}}} + (X{u_ * }){1_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}}} \nonumber\\ &=(Xu){1_{\left\{ {\left| {u - {u_ * }} \right| \leq k} \right\}}} + (Xu){1_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}}} - (Xu){1_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}}} + (X{u_ * }){1_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}}} \nonumber\\ &= (Xu){1_{\left\{ {\left| {u - {u_ * }} \right| \leq k} \right\}}} + (X{u_ * }){1_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}}}. \end{align} $ (3.6)

Combining (2.2), (3.6) and $\Omega = \left\{ {\left| {u - {u_ * }} \right| \leq k} \right\} \cup \left\{ {\left| {u - {u_ * }} \right| > k} \right\}$, it concludes

$ \begin{eqnarray}\label{eq1.14} &&\int_{\{|{u-{u_*}}|\leq k\}} f(x, Xu )dx +\int_{\{|{u-{u_*}}|> k\}} f(x, Xu )dx \nonumber\\ &\leq &\int_{\{|{u-{u_*}}|\leq k\}} f(x, Xw )dx +\int_{\{|{u-{u_*}}|> k\}} f(x, Xw )dx \nonumber\\ &= &\int_{\{|{u-{u_*}}|\leq k\}} f(x, Xu )dx +\int_{\{|{u-{u_*}}|> k\}} f(x, Xu_{*} )dx, \end{eqnarray} $ (3.7)

and then by (3.7),

$ \begin{equation}\label{eq1.15} \int_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}} {f(x, Xu)dx} \le \int_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}} {f(x, X{u_ * })dx}. \end{equation} $ (3.8)

It follows from (1.2), (3.3), (3.8) and Lemma 2.5 that

$ \begin{eqnarray}\label{eq1.16} && { ( {\int_\Omega {{{ | \psi |}^{{p^ * }}}dx} } )^{\frac{p} {{{p^ * }}}}} \leq c\int_\Omega {{{ | {X\psi } |}^p}dx} =c\int_{ \{ { | {u - {u_ * }} | > k} \}} {{{ | {Xu - X{u_ * }} |}^p}dx} \nonumber\\ & \leq&{2^p}c\int_{ \{ { | {u - {u_ * }} | > k} \}} {{{ | {Xu} |}^p}dx} + {2^p}c\int_{ \{ { | {u - {u_ * }} | > k} \}} {{{ | {X{u_ * }} |}^p}dx} \nonumber\\ & \leq&{2^p}c [ {\int_{ \{ { | {u - {u_ * }} | > k} \}} { ( {f(x, Xu)dx + {g_1}} )dx} } ] + {2^p}c [ {\int_{ \{ { | {u - {u_ * }} | > k} \}} { ( {f(x, X{u_ * })dx + {g_1}} )dx} } ] \nonumber\\ &\leq&{2^p}c [ {\int_{ \{ { | {u - {u_ * }} | > k} \}} { ( {f(x, X{u_ * })dx + {g_1}} )dx} } ]{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + {2^p}c [ {\int_{ \{ { | {u - {u_ * }} | > k} \}} { ( {f(x, X{u_ * })dx + {g_1}} )dx} } ] \nonumber\\ &\leq&c [ {\int_{ \{ { | {u - {u_ * }} | > k} \}} { ( {{{ | {X{u_ * }} |}^p} + {g_1} + {g_2}} )dx} } ]. \end{eqnarray} $ (3.9)

Since $p < q$, there exists a positive number $t$ such that $p < t \leq q$, thus from (3.9), Hölder's inequality and Minkowski's inequality, we can get

$\begin{eqnarray}\label{eq1.17} &&{ ( {\int_\Omega {{{ | \psi |}^{{p^ * }}}dx} } )^{\frac{p} {{{p^ * }}}}} \\ &\leq& c{ ( {\int_{ \{ { | {u - {u_ * }} | > k} \}} {{{ ( {{{ | {X{u_ * }} |}^p} + {g_1} + {g_2}} )}^{\frac{t} {p}}}dx} } )^{\frac{p} {t}}}{ [ {\text{meas} \{ { | {u - {u_ * }} | > k} \}} ]^{\frac{{t - p}} {t}}} \nonumber\\ &\leq& c ( {{{ ( {\int_\Omega {{{ | {X{u_ * }} |}^t}dx} } )}^{\frac{p} {t}}} + {{ ( {\int_\Omega {{{ ( {{g_1}} )}^{\frac{t} {p}}}dx} } )}^{\frac{p} {t}}} + {{ ( {\int_\Omega {{{ ( {{g_2}} )}^{\frac{t} {p}}}dx} } )}^{\frac{p} {t}}}} ) \cdot{ [ {\text{meas} \{ {| {u - {u_ * }} | > k} \}}]^{\frac{{t - p}} {t}}}.\nonumber \end{eqnarray} $ (3.10)

Moreover, we can define a positive number $b = \frac{{t - p}} {t}$ in (3.10), namely we have $0 < b = 1 - \frac{p} {t} \leq 1 - \frac{p} {q} < 1$; and thus from ${u_*} \in {W^{1, q}}(\Omega)$ and ${g_1}, {g_2} \in {L^{\frac{1} {{1 - b}}}}(\Omega)$, we can set

$ \begin{eqnarray}\label{eq1.18} M &=& {\left( {\int_\Omega {{{\left| {X{u_ * }} \right|}^{\frac{p} {{1 - b}}}}dx} } \right)^{1 - b}} + {\left( {\int_\Omega {{{\left( {{g_1}} \right)}^{\frac{1} {{1 - b}}}}dx} } \right)^{1 - b}} + {\left( {\int_\Omega {{{\left( {{g_2}} \right)}^{\frac{1} {{1 - b}}}}dx} } \right)^{1 - b}} < + \infty.\quad \end{eqnarray} $ (3.11)

Finally we insert (3.11) into (3.10), we easily obtain

$\begin{equation}\label{eq1.19} \int_\Omega {{{\left| \psi \right|}^{{p^ * }}}dx} \leq c{M^{\frac{{{p^ * }}} {p}}}{\left[ {meas\left\{ {\left| {u - {u_ * }} \right| > k} \right\}} \right]^{\frac{{b{p^ * }}} {p}}}. \end{equation} $ (3.12)

For any $h > k \geq {k_0}$, it follows from (3.4) that

$ \begin{align}\label{eq1.20} {\left( {h - k} \right)^{{p^ * }}}\left[ {meas\left\{ {\left| {u - {u_ * }} \right| > h} \right\}} \right]& = \int_{\left\{ {\left| {u - {u_ * }} \right| > h} \right\}} {{{\left( {h - k} \right)}^{{p^ * }}}dx} \leq \int_{\left\{ {\left| {u - {u_ * }} \right| > h} \right\}} {{{\left( {\left| {u - {u_ * }} \right| - k} \right)}^{{p^ * }}}dx} \nonumber\\ & \leq \int_{\left\{ {\left| {u - {u_ * }} \right| > k} \right\}} {{{\left( {\left| {u - {u_ * }} \right| - k} \right)}^{{p^ * }}}dx} =\int_\Omega {{{\left| \psi \right|}^{{p^ * }}}dx} . \end{align} $ (3.13)

Combining (3.12) and (3.13), it yields

$ \begin{align}\label{eq1.21} meas\left\{ {\left| {u - {u_ * }} \right| > h} \right\} \leq \frac{{c{M^{\frac{{{p^ * }}} {p}}}}} {{{{\left( {h - k} \right)}^{{p^ * }}}}}{\left[ {meas\left\{ {\left| {u - {u_ * }} \right| > k} \right\}} \right]^{\frac{{b{p^ * }}} {p}}}. \end{align} $ (3.14)

In (3.14), setting

$ \begin{align}\label{eq1.22} \varphi (h) = meas\left\{ {\left| {u - {u_ * }} \right| > h} \right\}, \varphi (k) = meas\left\{ {\left| {u - {u_ * }} \right| > k} \right\}, \alpha = {p^ * }, \beta = \frac{{b{p^ * }}} {p}. \end{align} $ (3.15)

We now apply Lemma 2.6 to (3.15). We can prove, respectively.

(ⅰ) If $b < \frac{p} {{{p^ * }}} = \frac{p} {{\frac{{Qp}} {{Q - p}}}} = \frac{{Q - p}} {Q}$, then $\beta < 1$. For any ${k_0} > 0$, it follows from (2.3) that

$ \begin{align}\label{eq1.23} meas\left\{ {\left| {u - {u_ * }} \right| > h} \right\} &\leq \left[ {{c^{\frac{1} {{1 - \beta }}}} + {{\left( {2{k_0}} \right)}^{\frac{\alpha } {{1 - \beta }}}}meas\left\{ {\left| {u - {u_ * }} \right| > {k_0}} \right\}} \right]{2^{\frac{\alpha } {{{{\left( {1 - \beta } \right)}^2}}}}}{\left( {\frac{1} {h}} \right)^{\frac{\alpha } {{1 - \beta }}}} \nonumber\\ &\leq \left[ {{c^{\frac{1} {{1 - \beta }}}} + {{\left( {2{k_0}} \right)}^{\frac{\alpha } {{1 - \beta }}}}meas{\kern 1pt} {\kern 1pt} {\kern 1pt} \Omega } \right]{2^{\frac{\alpha } {{{{\left( {1 - \beta } \right)}^2}}}}}{\left( {\frac{1} {h}} \right)^{\frac{\alpha } {{1 - \beta }}}}, \end{align} $ (3.16)

by (3.16) and (2.1), $u - {u_ * } \in L_{weak}^{\frac{\alpha } {{1 - \beta }}}(\Omega), $ where $\frac{\alpha } {{1 - \beta }} = \frac{{{p^ * }}} {{1 - \frac{{b{p^ * }}} {p}}} = \frac{{Qp}} {{Q - p - bQ}} > {p^ * } = \frac{{Qp}} {{Q - p}}$.

(ⅱ) If $b = \frac{{Q - p}}{Q}$, then $\beta = 1$. It follows from (2.4) that

$ \begin{align}\label{eq1.24} meas\left\{ {\left| {u - {u_ * }} \right| > h} \right\} \leq {\kern 1pt} {\kern 1pt} {e^{1 - \tau \left( {h - {k_0}} \right)}}meas\left\{ {\left| {u - {u_ * }} \right| > {k_0}} \right\}, \end{align} $ (3.17)

where $\tau = {\left({ec} \right)^{ - {\kern 1pt} {\kern 1pt} \frac{1} {{{p^ * }}}}} > 0$. When ${k_0} \leq 0$, we have

$\begin{align}\label{eq1.25} {e^{1 - \tau \left( {h - {k_0}} \right)}} = e{e^{ - \tau \left( {h - {k_0}} \right)}} \leq e{e^{ - \tau h}} \end{align} $ (3.18)

and

$ \begin{align}\label{eq1.26} meas\left\{ {\left| {u - {u_ * }} \right| > {k_0}} \right\} = meas{\kern 1pt} {\kern 1pt} \Omega , \end{align} $ (3.19)

Substituting (3.18) and (3.19) into (3.17),

$ \begin{align}\label{eq1.26aa} meas\left\{ {\left| {u - {u_ * }} \right| > h} \right\} \leq e{e^{ - \tau h}}meas{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \Omega . \end{align} $ (3.20)

It is easy to see that there exists a positive constant $\theta < \tau $ satisfying

$\begin{align} {e^{\theta \left| {u - {u_ * }} \right|}} - 1 =\int_0^{\left| {u - {u_ * }} \right|} {\theta {e^{\theta h}}} dh = \int_0^\infty {\theta {e^{\theta h}}} {1_{\left\{ {\left| {u - {u_ * }} \right| > h} \right\}}}dh. \label{b50} \end{align} $ (3.21)

It follows from (3.20) and (3.21) that

$ \begin{align*} \int_\Omega {\left( {{e^{\theta \left| {u - {u_ * }} \right|}} - 1} \right)} dx &= \int_\Omega {\int_0^\infty {\theta {e^{\theta h}}} {1_{\left\{ {\left| {u - {u_ * }} \right| > h} \right\}}}dh} dx =\int_\Omega {{1_{\left\{ {\left| {u - {u_ * }} \right| > h} \right\}}}dx\int_0^\infty {\theta {e^{\theta h}}} dh} \nonumber\\ &=\int_{\left\{ {\left| {u - {u_ * }} \right| > h} \right\}} {1dx\int_0^\infty {\theta {e^{\theta h}}} dh} =meas\left\{ {\left| {u - {u_ * }} \right| > h} \right\}\int_0^\infty {\theta {e^{\theta h}}dh} \nonumber\\ &= \int_0^\infty {\theta {e^{\theta h}}meas\left\{ {\left| {u - {u_ * }} \right| > h} \right\}dh} \leq \int_0^\infty {\theta {e^{\theta h}}e{e^{ - \tau h}}meas{\kern 1pt} {\kern 1pt} \Omega }{\kern 1pt} dh \nonumber\\ &= \frac{{\theta e}}{{\tau - \theta }}{\kern 1pt} meas{\kern 1pt} {\kern 1pt} \Omega, \label{b51} \end{align*} $

which implies

$ {{e^{\theta \left| {u - {u_*}} \right|}} \in {L^1}(\Omega )}. $

(ⅲ) If $b > \frac{{Q - p}}{Q}$, then $\beta > 1$. It follows from (2.5) that

$\begin{align}\label{eq1.27} \varphi \left( {{k_0} + d} \right) = meas\left\{ {\left| {u - {u_ * }} \right| > {k_0} + d} \right\} = 0, \end{align} $ (3.22)

where $d = c{\left({meas\left\{ {\left| {u - {u_ * }} \right| > {k_0}} \right\}} \right)^{\frac{{bQ - Q + b}} {{Qp}}}}{2^{\frac{{bQ}} {{bQ - Q + p}}}}$, hence from (3.22) and (2.1), we obtain $u - {u_ * } \in L_{weak}^\infty (\Omega)$. Also since $L_{weak}^\infty (\Omega) = {L^\infty }(\Omega)$, then $u - {u_ * } \in {L^\infty }(\Omega)$.

References
[1]
Adams R A. Sobolev spaces[M]. New York: Academic Press, 1975.
[2]
Campanato S. Sistemi ellittici in forma divergenza: regolarità all'interno[M]. Pisa: Scuola Normale Superiore, 1980.
[3]
Capogna L, Danielli D, Garofalo N. An embedding theorem and the Harnack inequality for nonlinear subelliptic equations[J]. Comm. Partial Differential Equations, 1993, 18(9-10): 1765-1794. DOI:10.1080/03605309308820992
[4]
Evans L C. Quasiconvexity and partial regularity in the calculus of variations[J]. Arch. Ration. Mech. Anal., 1986, 95(3): 227-252. DOI:10.1007/BF00251360
[5]
Gao H, Leonetti F, Wang L. Remarks on Stampacchia lemma[J]. J. Math. Anal. Appl., 2018, 458(1): 112-122. DOI:10.1016/j.jmaa.2017.08.056
[6]
Garofalo N, Nhieu D M. Isoperimetric and Sobolev inequalities for Carnot-Carathédory spaces and the existence of minimal surfaces[J]. Comm. Pure Appl. Math., 1996, 40(10): 1081-1144.
[7]
Giannetti F. Weak minima of integral functionals in Carnot-Carathéodory spaces[J]. Ricerche Mat., 2005, 54(1): 255-270.
[8]
Giaquinta M. Multiple integrals in the calculus of variations and nonlinear elliptic systems[M]. Princeton: Princeton University Press, 1983.
[9]
Giusti E. Metodi diretti nel calcolo delle variazioni[M]. Bologna: Unione Matematica Italiana, 1994.
[10]
Hestenes M R. Calculus of variations and optimal control theory[M]. New York: Wiley, 1966.
[11]
Hörmander L. Hypoelliptic second order differential equations[J]. Acta Math., 1967, 119(1): 147-171.
[12]
Leonetti F, Siepe F. Global integrability for minimizers of anisotropic functionals[J]. Manuscripta Math., 2014, 144(1-2): 91-98. DOI:10.1007/s00229-013-0641-y
[13]
Leonetti F, Petricca P V. Regularity for minimizers of integrals with nonstandard growth[J]. Nonlinear Anal., 2015, 129: 258-264. DOI:10.1016/j.na.2015.09.009
[14]
Stampacchia G. Équations elliptiques du second ordre à coefficients discontinues[J]. Séminaire Jean ′ Leray, 1963, 16(3): 1-77.
[15]
Stampacchia G. Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinues[J]. Ann. Inst. Fourier, 1965, 15(1): 189-257. DOI:10.5802/aif.204
[16]
Xu C. Subelliptic variational problems[J]. Bull. Soc. Math. France, 1990, 118(2): 147-169. DOI:10.24033/bsmf.2141
[17]
Xu C. On the regularity of the minima of quasiconvex integrals[J]. Acta Math. Sinica (N.S.), 1992, 8(4): 362-374.