Let $ (B, H, \mu) $ be an abstract Wiener space. The capacity is a set function on $ B $ with the property that it sometimes takes positive values even for $ \mu $-null sets, while a set of capacity zero has always $ \mu $-measure zero. As we know, capacity is much finer than probability. An important difference between the capacity and probability is that the second Borel-Cantelli's lemma does not hold with respect to capacity $ C_{r, p} $ while it holds with respect to probability. Therefore, an interesting problem is to find out what property holds not only almost sure but also quasi sure. In this paper, we discuss this topic.
Many basic properties of Wiener processes were studied by authors (see [1-6]), such as the functional law of iterated logarithm, the functional modulus of continuity and large increments hold not only for $ \mu $-a.s. but also for the sense of $ C_{r, p} $-a.s.
In recent paper [2], Gao and Liu established local functional Chung's law for increments of Brownian motion. In the present paper, we discuss similar results, but the probability is replaced by $ (r, p) $-capacity. The exact approximation rate for the modulus of continuity of Brownian motion can be viewed as a special case of our results.
We use standard notation and concepts on the abstract Wiener space $ (B, H, \mu) $, including the $ H $-derivative $ D $, its adjoint $ D^* $ and the Ornstein-Uhlenbeck operator $ \mathcal{L} = -D^*D $. Let $ D^{r, p}, r>0, 1\leqslant p<\infty $ be Sobolev space of Wiener functionals, i.e.,
where $ L^p $ denotes $ L^p $-space of real-valued functions on $ (B, \mu ) $. For $ r> 0, \; p> 1 $, $ (r, p) $-capacity is defined by $ C_{r, p}(O) = \inf\{\|F\|_{r, p}^p; F\geqslant 1, \mu $-a.s. on$ \; O\}, \; \mbox{for open set}\; \; O \subset W, $ and for any set $ A\subset W $, $ C_{r, p}(A) = \inf\{C_{r, p}(O);A \subset O\subset W, \; O\; \mbox{is open}\}. $
Let us consider classical Wiener space $ (W, H, \mu) $ as follows
Let $ \mathcal C^d $ denote the space of continuous functions from $ [0, 1] $ to $ R^d $ endowed with usual supnorm $ \|f\|: = \sup\limits_{0\leqslant t \leqslant 1}|f(t)| $ and denote by $ \mathcal C^d_0: = \{f\in \mathcal C^d; f(0) = 0\} $, by $ \mathcal H^d: = \{f\in \mathcal C^d_0; f(t) = \int _0^t\dot{f}(s)ds, \|f\|_{\mathcal H^d}^2: = \int_0^1|\dot{f}(t)|^2dt<\infty \} $, $ K: = \{f\in {\mathcal{H}}^d; 2I(f)\leqslant 1\} $, where
Throughout this paper, let $ a_u, b_u $ be two non-decreasing continuous functions from $ (0, 1) $ to $ (0, e^{-1}) $ satisfying
(ⅰ) $ a_u\leqslant b_u $ for any $ u\in(0, 1) $ and $ \lim\limits_{u\to 0}a_u = 0 $,
(ⅱ) $ \frac{b_u}{a_u} $ is non-increasing.
Let $ w\in W $, for $ u\in (0, 1) $, $ 0\leqslant t\leqslant 1 $, $ \Delta(t, u) $ denotes the following path
Set
and
The following theorems are results of this paper.
Theorem 1.1 If conditions (ⅰ) and (ⅱ) hold, then for any $ f\in K $ with $ 2I(f)<1 $, we have
where $ b(f) = (\frac{c_d}{2})^{1/2}/(1-2I(f))^{-1/2} $, $ c_d $ is a positive constant.
Under the additional assumption (ⅲ) $ \lim\limits_{u\to 0} \frac{\log (b_u/a_u)}{\log\log b_u^{-1}} = \infty $, we get
Theorem 1.2 If conditions (ⅰ), (ⅱ) and (ⅲ) hold, then for any $ f\in K $ with $ 2I(f)<1 $, we have
Corollary 1.1 Let $ M_{t, h}(x) = \frac{w(t+hx)-w(t)}{\sqrt{2h\log(2e^{-2}h^{-1})}}, 0\leqslant x\leqslant 1, 0\leqslant t\leqslant 1-h. $ For any $ f\in K $ with $ 2I(f)<1 $, we have
Proof of Theorem 1.1 is completed by the following lemmas.
Lemma 2.1 (see [3], Lemma 2.2) Let $ 1\leqslant k\in Z $, $ q_1, q_2, \in(1, \infty) $ be given so that $ \frac{1}{p} = \frac{1}{q_1}+\frac{1}{q_2} $. For any $ f\in K $, put
where $ 0\leqslant t_i<\infty, h_i>0, i = 1, 2, \cdot\cdot\cdot, n $. Then there exists a constsnt $ c = c(k, p, q_1, f, d)>0 $, for any $ \delta\in(0, 1], \varepsilon\in(0, 1] $, we have
Lemma 2.2 (see [3], Lemma 2.4) There exists a positive number $ c_d $ such that for any $ h>0 $, $ \tau>0 $, $ f\in K $, we have
Lemma 2.3 For any $ f\in K $ with $ 2I(f)<1 $, we have
Proof Case Ⅰ $ \limsup\limits_{u\to 0} \frac{\log \frac{b_u}{a_u}}{\log\log b_{u}^{-1}}<\infty $. If $ \limsup\limits_{u\to 0}\frac{\log\frac{b_u}{a_u}}{\log\log b^{-1}_u}<\infty $, then $ b_u\to0 $ as $ u\to0 $ and there exists a $ 0<M<\infty $ such that $ \frac{b_u}{a_u}\leqslant (\log b^{-1}_u)^M $. Let $ l(u) = a_u(\log\frac{b_u\log b_u^{-1}}{a_u})^{-3} $, and take $ u_n $ such that $ a_{u_n} = (\exp (\frac{n}{(\log n)^3} ) )^{-1} $. Set $ k_n = [\frac{b_{u_n}}{l(u_{n+1})}] $, $ t_i = il(u_{n+1}), i = 0, 1, \ldots, k_n $. Then
For any $ 0<\varepsilon<1 $, choose $ \delta>0 $ such that $ \eta = -2\delta+2I(f)+\frac{1-2I(f)}{(1-\varepsilon)^2}>1 $. By Lemma 2.2, for $ n $ large enough, we have
by Borel-Cantelli's lemma,
On the other hand, for any $ \delta_0>0 $,
moreover
where $ A = \{f\in W; \mathop{\sup}\limits_{0\leqslant t\leqslant 1}\|f(\frac{t}{2}+\frac{\cdot}{2})-f(\frac{t}{2})\| \geqslant \delta_0\} $. For $ f\in A, \mathop{\sup} \limits_{0\leqslant t\leqslant 1}\int_{\frac{t}{2}}^{\frac{1+t}{2}} |\dot{f}(s)|^2ds\geqslant \delta_0^2 $, thus $ \inf\limits_{f\in A}\frac{1}{2}\|f\|^2_H \geqslant \frac{\delta_0^2}{2} $. By Theorem 1.1 in [5], we have
Taking into account $ \log\frac{b_{u_{n+1}}\log b^{-1}_{u_{n+1}}}{a_{u_{n+1}}}\to \infty, \; \text{ as }\; n\to \infty $, thus
by Borel-Cantelli's lemma
By (2.1)–(2.3), we get
Remark that $ u_n\to 0 $, so for any small enough $ u $, there is a unique $ n $ such that $ u\in (u_{n+1}, u_n]. $ Let $ \phi_{t, u}(s) = \beta_u(w(t+a_us)-w(t)), s\in [0, 1], t\in[0, b_u-a_u] $. We define $ X(u) = \ell_u\mathop{\inf}\limits_{t\in [0, u-a_u]} \|\phi_{t, u}(\cdot)-f(\cdot)\| $, $ X_n = \mathop{\inf}\limits_{u_{n+1}< u\leqslant u_n}X(u). $ By the definition of infimum, for any $ \varepsilon>0 $, there exists $ T_n\in (u_{n+1}, u_n] $ such that $ X_n\geqslant X(T_n)-\varepsilon. $
For any $ r\in[0, 1] $, let $ x = \frac{ra_{{u_{n+1}}}}{a_{T_n}} $. Then we have, for $ 0\leq x\leq 1. $
Noting that
by (2.4), (2.5), (2.7)–(2.9), we get
Since
which ends the proof.
Case Ⅱ $ \limsup\limits_{u\to 0} \frac{\log \frac{b_u}{a_u}} {\log\log b_{u}^{-1}} = \infty $. If $ \limsup\limits_{u\to 0}\frac{\log\frac{b_u}{a_u}}{\log\log b^{-1}_u} = \infty $, then we can choose a non-increasing sequence $ \{u_n; n\geq 1 \} $ with $ \frac{b_{u_n}}{a_{u_n}} = n^d, d>1 $. Let $ h(n) = \frac{\log \frac{b_{u_n}}{a_{u_n}}}{\log\log b_{u_n}^{-1}} = \frac{\log n^d}{\log\log b_{u_n}^{-1}} $, then $ b_{u_n}^{-1} = \exp\{n^{\frac{d}{h(n)}}\} $ and $ h(n)\to\infty $ as $ n\to \infty $. Let $ l(u), k_n $ and $ t_i, i = 1, 2, ..., k_n $ be defined by Case Ⅰ. Then for some constant $ C>0 $, if $ d $ is chosen in a suitable way, then
Furthermore,
which implies that
Similarly to the proof of Case Ⅰ, the proof of Lemma 2.3 is completed.
Lemma 2.4 For any $ f\in K $ with $ 2I(f)<1 $, we have
Proof Set $ \rho: = \lim\limits_{u\rightarrow 0+} \frac{a_u}{b_u}. $ If $ \rho<1 $ and $ b_u\to b\not = 0 $ as $ u\to0 $, then $ \lim\limits_{u\to 0+} \frac{\log \frac{b_u}{a_u}}{\log\log b_u^{-1}} = \infty $. In this case, see Lemma 3.2. Therefore, we only consider the following two cases
(Ⅰ) $ \rho<1 $ and $ b_u\to 0 $ as $ u\to 0 $,
(Ⅱ) $ \rho = 1 $.
Case Ⅰ $ \rho<1 $ and $ b_u\to0 $ as $ u\to0 $} If $ \rho<1 $ and $ b_u\to 0 $ as $ u\to 0 $, then we can choose $ \{u_{k}, k\geq 1\} $ such that $ b_{u_{k+1}} = b_{u_k}-a_{u_k}, \; k\geq1. $ For any $ \; \varepsilon>0 $, choose $ \delta>0 $ such that $ \frac{1-2I(f)}{(1+\varepsilon)^2}+2I(f)+2\delta<1 $. Set $ k = [r]+1 $, by Lemma 2.1, we have
moreover, by small deviation,
thus
Noting that, there exists $ A = A(m_0)>0 $ such that
where $ \varepsilon' = 1-(\frac{1-2I(f)}{(1+\varepsilon)^2}+2I(f)+2\delta)>0 $.
We discuss as follows
(a) If $ \limsup\limits_{u\to 0} \frac{\log(b_u/a_u)}{\log\log b^{-1}_u}<\infty, $ then for some $ 0<M<\infty $, we have $ \frac{b_u}{a_u}\leqslant (\log b^{-1}_u)^M $. Take $ \theta>2/\varepsilon', u_0 = e^{-(\log l_0)^\theta} $, there exists $ l_0 $ large enough, we can prove that
we get
When $ l $ is large enough, for constant $ c'>0 $, we can also prove that $ c'l\geqslant \log b^{-1}_{u_l}. $ Thus we have
where $ c_0 $ is a constant. We get
consequently
we have
(b) If $ \limsup\limits_{u\to 0} \frac{\log (b_u/a_u)}{\log\log b^{-1}_u} = \infty, $ then see Lemma 3.2.
Case Ⅱ Set $ \rho = 1 $. By applying Lemma 2.1, similarly to the corresponding that of (3.3) in [2].
Proof of Theorem 1.2 is completed by the following lemmas.
Lemma 3.1 If condition (ⅲ) also holds, then there exists an non-increasing $ \{u_n, n\geqslant 1\} $ for any $ f\in K $ with $ 2I(f)<1 $, we have
Proof Owing to $ \lim\limits_{u\to 0+}\frac{\log\frac{b_u}{a_u}}{\log\log b_u^{-1}} = \infty, $ there exists a subsequence $ \{u_n ; n\geq 1 \} $ such that $ \frac{b_{u_n}}{a_{u_n}} = n^d $. Let
then $ b_{u_n}^{-1} = \exp\{n^{ \frac{d}{h(n)}}\} $ and $ h(n)\to \infty $ as $ n\to \infty $. And for any small enough $ \alpha>0, \frac{(n+1)^\alpha}{\log b_{u_{n+1}}^{-1}}\to \infty $, $ 1\leqslant \frac{b_{u_n}}{b_{u_{n+1}}} = \exp\big( (n+1)^{ \frac{d}{h(n+1)}}-n^{ \frac{d}{h(n)}}\big)\leqslant \exp\big( n^{ \frac{d}{h(n)}-1}\big)\to 1 $ and $ \frac{a_{u_n}}{a_{u_{n+1}}}\to 1 $ as $ n\to \infty $. Choose $ \delta>0 $ such that $ \eta_0: = \frac{1-2I(f)}{(1+\varepsilon)^2}+2I(f)+2\delta<1 $. Take $ k = [r]+1 $, by Lemma 2.1 and small deviation, for $ n $ large enough, we have
where $ c_0 $ is a constant. If $ d $ is chosen in a suitable way, then
Lemma 3.2 If conditions (ⅰ), (ⅱ) and (ⅲ) hold, then for any $ f\in K $ with $ 2I(f)< 1 $, we have
Proof Let $ \phi_{t, u}(s) = \beta_u(w(t+a_us)-w(t)) $, $ u_n $ is defined as in Lemma 3.1. Since $ \phi_{t, u}(s) = \frac{\beta_u}{\beta_{u_n}}\phi_{t, u_n} (\frac{a_u}{a_{u_n}}s ) $, we have
Moreover
We can conclude Lemma 3.2 from (3.1)-(3.3) and Lemma 3.1.