数学杂志  2019, Vol. 39 Issue (6): 921-924   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
史丽妍
马丽
魏俊潮
EP元的一些新刻画
史丽妍, 马丽, 魏俊潮    
扬州大学数学科学学院, 江苏 扬州 225002
摘要:本文研究了*-环R的一个core可逆元成为EP元的条件.通过对几个给定方程的解的探讨,主要证明了如下结果:设aR#R,则aREP当且仅当下面的方程中有一个方程在χa中至少有一个解,其中χa={aa*aa#,(a#*,(a*}:(1)xaa*a=a*a2x;(2)a*aa*x=xa*a*a;(3)xa*aa*=aa*a*x;(4)aa*ax=xa2a*.
关键词EP元    群可逆元    MP可逆元    方程的解    χa    
SOME NEW CHARACTERIZATIONS ON EP ELEMENTS
SHI Li-yan, MA Li, WEI Jun-chao    
School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
Abstract: In this paper, we give some conditions for a core invertible element being EP element in a *-ring R. We mainly prove the following results by discussing the solutions of some given equations: Let aR#R. Then aREP if and only if one of the following equations has at least one solution in χa, where χa = {a, a*, a, a#, (a#)*, (a)*}: (1) xaa*a = a*a2x; (2) a*aa*x = xa*a*a; (3) xa*aa*= aa*a*x; (4) aa*ax = xa2a*.
Keywords: EP element     group invertible element     MP invertible element     the soluion of equation     χa    
1 引言

本文所涉及的环均表示有单位元的结合环.设$ R $是一个环, $ a \in R $, 若存在$ c \in R $, 使得

$ aca = a;\; cac = c;\; ac = ca, $

则称$ a $$ R $的群可逆元[1], 且称$ c $$ a $的群逆元.由文献[2]知, 群可逆元$ a $的群逆元是唯一确定的, 通常记为$ a^{\#} $.本文用$ R^{\#} $表示环$ R $的全体群可逆元的集合.

$ R $为一个环, $ \ast $为环$ R $$ R $的一个双射, 满足条件$ (a^{*})^{*} = a; $ $ (a+b)^{*} = a^{*}+b^{*}; $ $ (ab)^{*} = b^{*}a^{*}, $其中$ a, b \in R $, 则称$ R $为一个对合环, 有时也简称$ R $$ \ast $ -环[3].

$ a \in R $, 若存在$ x \in R $, 满足$ a = axa;\; x = xax;\; (ax)^{*} = ax;\; (xa)^{*} = xa, $则称$ a $为Moore Penrose可逆元, 简称$ a $为MP可逆元, $ x $称为$ a $的MP逆元.由文献[4]知, MP可逆元$ a $的MP逆元是唯一确定的, 记为$ a^{\dagger} $.用$ R^{\dagger} $表示$ \ast $ -环$ R $的全体MP可逆元的集合.

$ R $$ \ast $ -环, 若$ a \in R^{\#} \cap R^{\dagger} $$ a^{\dagger} = a^{\#} $, 则称$ a $$ R $的EP元[5].用$ R^{\text {EP}} $表示$ R $的全体EP元的集合. EP元的研究起源于矩阵广义逆与算子广义逆, 最早可追溯到对EP矩阵[6]的研究.对EP矩阵的刻画还可参见文献[7-11].本文主要从纯环论的角度研究EP元, 通过构造几个特定的方程, 研究其解与结合$ \ast $ -环上一个core可逆元成为EP元的等价条件, 这是环论上研究EP元的一种新型的方法.

2 主要结果

引理 1[12]  设$ a\in R^{\#}\cap R^{\dagger} $, 则

(1)  $ Ra = Ra^{2} = Ra^{\#} = Ra^{\dagger}a = Ra^{*}a = Ra^{\#}a $;

(2)  $ aR = a^{2}R = a^{\#}R = aa^{\dagger}R = aa^{*}R $;

(3)  $ Ra^{*} = Ra^{\dagger} = R(a^{*})^{2} = Raa^{*} $;

(4)  $ a^{*}R = a^{\dagger}R = (a^{*})^{2}R = a^{*}aR $.

$ a \in R^{\#} \cap R^{\dagger} $$ aa^{\#} = (aa^{\#})^{*} $, 则$ a \in R^{\text {EP}} $.因此当$ aa^{\#} = aa^{\dagger} $时必有$ a \in R^{\text {EP}} $.从而有下面的引理.

引理 2[13]  设$ a\in R^{\#}\cap R^{\dagger} $,

(1)  若$ Ra \subseteq Ra^{*} $, 则$ a \in R^{\text {EP}} $;

(2)  若$ Ra^{*} \subseteq Ra $, 则$ a \in R^{\text {EP}} $;

(3)  若$ aR \subseteq a^{*}R $, 则$ a \in R^{\text {EP}} $;

(4)  若$ a^{*}R \subseteq aR $, 则$ a \in R^{\text {EP}} $.

$ R $$ \ast $ -环, $ a\in R^{\#}\cap R^{\dagger} $, 则$ (a^{\#})^{*} = (a^{*})^{\#} $, $ (a^{\dagger})^{*} = (a^{*})^{\dagger} $, $ (a^{\dagger})^{\dagger} = a $.由于$ (a^{\#})^{\dagger} $$ (a^{\dagger})^{\#} $未必存在, 因此记$ \chi_{a} = \{a, a^{*}, a^{\dagger}, a^{\#}, (a^{\#})^{*}, (a^{\dagger})^{*}\} $.

定理 3  设$ a\in R^{\#}\cap R^{\dagger} $, 则$ a \in R^{\text {EP}} $当且仅当下面的方程(2.1)在$ \chi_{a} $中至少有一个解,

$ \begin{equation} \\ \begin{aligned} xaa^{*}a = a^{*}a^{2}x. \end{aligned} \end{equation} $ (2.1)

 必要性  由于$ a \in R^{\text {EP}} $, 所以$ a^{\dagger} = a^{\#} $.易见$ a^{\dagger}aa^{*}a = a^{*}a, \; a^{*}a^{2}a^{\dagger} = a^{*}a^{2}a^{\#} = a^{*}a $, 从而$ x = a^{\dagger} $为方程(2.1)在$ \chi_{a} $中的一个解.

充分性  (1)  若$ x = a $为解, 则$ a^{2}a^{*}a = a^{*}a^{3} $.从而由引理1知$ aR = a^{2}R = a(aa^{*}R) = a^{2}a^{*}R = a^{2}(a^{*}aR) = a^{2}a^{*}aR = a^{*}a^{3}R = a^{*}aR = a^{*}R, $由引理2知$ a \in R^{\text {EP}} $.

(2)  若$ x = a^{\#} $为解, 则$ a^{\#}aa^{*}a = a^{*}a^{2}a^{\#} = a^{*}a $.由引理1知

$ a^{*}R = a^{*}aR = a^{\#}aa^{*}aR \subseteq a^{\#}R = aR, $

由引理2知$ a \in R^{\text {EP}} $.

(3)  若$ x = a^{\dagger} $为解, 则$ a^{\dagger}aa^{*}a = a^{*}a^{2}a^{\dagger} $, 即$ a^{*}a = a^{*}a^{2}a^{\dagger} $.由引理1知

$ Ra = Ra^{*}a = Ra^{*}a^{2}a^{\dagger} \subseteq Ra^{\dagger} = Ra^{*}, $

由引理2知$ a \in R^{\text {EP}} $.

(4)  若$ x = a^{*} $为解, 则

$ \begin{equation} a^{*}aa^{*}a = a^{*}a^{2}a^{*}. \end{equation} $ (2.2)

将(2.2)左乘$ (a^{\dagger})^{*} $$ aa^{*}a = a^{2}a^{*} $, 由引理1得

$ Ra = Ra^{*}a = Raa^{*}a = Ra^{2}a^{*} = Raa^{*} = Ra^{*}, $

由引理2知$ a \in R^{\text {EP}} $.

(5)  若$ x = (a^{\#})^{*} $为解, 则

$ \begin{equation} (a^{\#})^{*}aa^{*}a = a^{*}a^{2}(a^{\#})^{*}. \end{equation} $ (2.3)

对(2.3)应用对合得$ a^{*}aa^{*}a^{\#} = a^{\#}a^{*}a^{*}a $, 由引理1知

$ aR = a^{\#}R = a^{\#}a^{*}R = a^{\#}a^{*}a^{*}R = a^{\#}a^{*}a^{*}aR = a^{*}aa^{*}a^{\#}R \subseteq a^{*}R, $

由引理2知$ a \in R^{\text {EP}} $.

(6)  若$ x = (a^{\dagger})^{*} $为解, 则

$ \begin{equation} (a^{\dagger})^{*}aa^{*}a = a^{*}a^{2}(a^{\dagger})^{*}. \end{equation} $ (2.4)

对(2.4)应用对合得$ a^{*}aa^{*}a^{\dagger} = a^{\dagger}a^{*}a^{*}a $, 由引理1知

$ Ra = Ra^{*}a = Ra^{*}a^{*}a = Ra^{*}a^{*}a^{*}a = Ra^{\dagger}a^{*}a^{*}a = Ra^{*}aa^{*}a^{\dagger} \subseteq Ra^{\dagger} = Ra^{*}, $

由引理2知$ a \in R^{\text {EP}} $.

注意到$ x \in \chi_{a} $当且仅当$ x^{*} \in \chi_{a} $, 因此对方程(2.1)两边取对合可得下面的方程

$ \begin{equation} a^{*}aa^{*}x = xa^{*}a^{*}a. \end{equation} $ (2.5)

由定理3可得如下推论.

推论 4  设$ a\in R^{\#}\cap R^{\dagger} $, 则$ a \in R^{\text {EP}} $当且仅当上面的方程(2.5)在$ \chi_{a} $中至少有一个解.

由于$ a \in R^{\text {EP}} $当且仅当$ a^{*} \in R^{\text {EP}} $, 因此把方程(2.1)中的$ a $换成$ a^{*} $, 可得下面的方程

$ \begin{equation} xa^{*}aa^{*} = aa^{*}a^{*}x. \end{equation} $ (2.6)

利用定理3,可得如下推论.

推论 5  设$ a\in R^{\#}\cap R^{\dagger} $, 则$ a \in R^{\text {EP}} $当且仅当上面的方程(2.6)在$ \chi_{a} $中至少有一个解.

把方程(2.6)两边取对合可得下面的方程

$ \begin{equation} aa^{*}ax = xa^{2}a^{*}. \end{equation} $ (2.7)

由推论5知有下面的推论.

推论 6  设$ a\in R^{\#}\cap R^{\dagger} $, 则$ a \in R^{\text {EP}} $当且仅当上面的方程(2.7)在$ \chi_{a} $中至少有一个解.

定理 7   设$ a\in R^{\#}\cap R^{\dagger} $, 若下列条件之一成立, 则$ a \in R^{\text {EP}} $.

(1)  $ a^{2}a^{*} = a^{*}a^{3}a^{\dagger} $;

(2)  $ a^{\#}aa^{*} = a^{*} $;

(3)  $ (a^{\dagger})^{*}aa^{*} = a^{*}a^{2}(a^{\dagger})^{*}a^{\dagger} $.

  (1)  由于$ a^{2}a^{*} = a^{*}a^{3}a^{\dagger} $, 右乘$ a $$ a^{2}a^{*}a = a^{*}a^{3} $.由定理3充分性的证明(1)知$ a \in R^{\text {EP}} $.

(2)  由于$ a^{\#}aa^{*} = a^{*} $, 右乘$ (a^{\dagger})^{*} $$ a^{\#}a = a^{\dagger}a $, 故$ a \in R^{\text {EP}} $.

(3)  由于$ (a^{\dagger})^{*} = (a^{\dagger}aa^{\dagger})^{*} = (a^{\dagger})^{*}a^{\dagger}a $, 从而$ R(a^{\dagger})^{*} \subseteq Ra $.又$ a = aa^{\dagger}a = a(a^{\dagger}a)^{*} = aa^{*}(a^{\dagger})^{*}, $从而$ Ra \subseteq R(a^{\dagger})^{*} $, 于是$ R(a^{\dagger})^{*} = Ra $.由于$ (a^{\dagger})^{*}aa^{*} = a^{*}a^{2}(a^{\dagger})^{*}a^{\dagger} $, 两边取对合得

$ aa^{*}a^{\dagger} = (a^{\dagger})^{*}a^{\dagger}a^{*}a^{*}a. $

故由引理1知$ Ra = Ra^{*}a = Ra^{*}a^{*}a = Ra^{*}a^{*}a^{*}a = Ra^{\dagger}a^{*}a^{*}a = Raa^{\dagger}a^{*}a^{*}a = R(a^{\dagger})^{*}a^{\dagger}a^{*}a^{*}a = Raa^{*}a^{\dagger} \subseteq Ra^{\dagger} = Ra^{*} $, 由引理2知$ a \in R^{\text {EP}} $.

推论 8  设$ a\in R^{\#}\cap R^{\dagger} $, 则$ Ra = R(a^{\dagger})^{*} $; $ aR = (a^{\dagger})^{*}R $.

方程(2.1)右乘$ a^{\dagger} $得下面的方程

$ \begin{equation} xaa^{*} = a^{*}a^{2}xa^{\dagger}. \end{equation} $ (2.8)

由定理7知当$ x = a, \; a^{\#}, \; (a^{\dagger})^{*} $为方程(2.8)的解时, 都有$ a \in R^{\text {EP}} $.

参考文献
[1] Drazin M P. Pseudo-inverses in associative rings and semigroups[J]. Amer. Math. Monthly, 1958, 65(7): 506–514. DOI:10.1080/00029890.1958.11991949
[2] Ben-Israel A, Greville T N E. Generalized inverses: theory and applications (2nd ed.)[M]. New York: Wiley, 2003.
[3] Koliha J J, Patricio P. Elements of rings with equal spectral idempotents[J]. J. Austr. Math. Soc., 2002, 72(1): 137–152. DOI:10.1017/S1446788700003657
[4] Dijana M, Dragan S D, Koliha J J. EP elements in rings[J]. Linear Algebra Appl., 2009, 431(3): 527–535.
[5] Dijana M, Dragan S D. Further results on partial isometries and EP elements in rings with involution[J]. Math. Comut. Modelling, 2011, 54(3): 460–465.
[6] Hartwig R E. Block generalized inverses[J]. Arch. Retion. Mech. Anal., 1976, 61(3): 197–251. DOI:10.1007/BF00281485
[7] Yao H, Wei J C. EP elements and *-strongly regular rings[J]. Filomat, 2018, 32(1): 117–125. DOI:10.2298/FIL1801117Y
[8] Chen W X. On EP elements, normal elements and partial isometries in rings with involution[J]. Electron. J. Linear Algebra, 2012, 23(3): 553–561.
[9] Cheng S Z, Tian Y G. Two sets of new characterizations for normal and EP matrices[J]. Linear Algebra Appl., 2003, 375(2): 181–195.
[10] 徐小平, 肖薇雨, 黄强联. 广义逆与算子方程的解[J]. 杨州大学学报(自然科学版), 2017, 20(2): 17–20.
[11] Djordjevic D S. Products of EP operators on Hilbert spaces[J]. Proc. Amer. Math. Soc., 2001, 129(6): 1727–1731.
[12] Qu Y C, Wei J C, Yao H. Characterizations of normal elements in rings with involution[J]. Acta. Math. Hungar, 2018, 156(2): 459–464. DOI:10.1007/s10474-018-0874-z
[13] 许三长.环上广义逆及相关偏序[D].江苏: 东南大学, 2017.