在上世纪90年代, Larson, Sourour和Kadison在文献[1, 2]中分别独立地提出了局部导子的概念.之后, 学者们开始研究结合代数和非结合代数上的局部导子的结构.设$ \mathscr{H} $是Banach空间, $ \mathscr{B(H)} $是$ \mathscr{H} $上有界线性算子全体构成的代数. Larson和Sourour在文献[1]中证明了$ \mathscr{B(H)} $上的局部导子都是导子; Kadison在文献[2]中证明了Von Neumann代数$ \mathscr{R} $到它的对偶Banach模的任一范数连续的局部导子是导子; 在文献[3]中, 作者证明了$ C^{*} $代数$ \mathfrak{U} $到Banach $ \mathfrak{U} $ -双模上的局部导子是导子; 在文献[4]中, 作者证明了因子von Neumann代数的套子代数的任一范数连续线性局部导子是导子; 赵延霞和王丽在文献[5]中证明了可交换环上上三角矩阵李代数的局部导子是导子; Ayupov和Kudaybergenov在文献[6]中证明了特征为0的代数闭域上有限维半单李代数上的局部导子是导子并且证明了维数大于3的有限维幂零李代数上存在不是导子的局部导子.
2 -局部导子可看作局部导子的一种非线性推广, 它的概念是由Šemrl在文献[7]中提出的.令$ H $是无限维可分离Hilbert空间, $ \mathcal{B}(H) $是$ H $上所有有界线性算子构成的代数. Šemrl在文献[7]中证明了$ \mathcal{B}(H) $上的所有2 -局部导子都是导子; 2011年, Ayupov和Kudaybergenov在文献[8]中将Šemrl的结论推广到任意Hilbert空间上, 即当$ H $是任意Hilbert空间时, $ \mathcal{B}(H) $上的任一2 -局部导子都是导子.此外, Ayupov等人还给出了其他代数上2 -局部导子的结构.例如, 在文献[9]中, 作者们给出了交换正则代数上存在非导子的2 -局部导子的充分必要条件, 同时证明了交换正规代数上矩阵代数的2 -局部导子是导子; 在文献[10]中, 作者们证明了特征为0的代数闭域上有限维半单李代数上的2 -局部导子都是导子, 同时给出了有限维幂零李代数上2 -局部导子不是导子的例子.
令$ R $表示有单位元1的2 -挠自由交换环, $ L_{n}(R) $表示$ R $上所有$ n\times n $反对称矩阵构成的一个李代数.在$ L_{n}(R) $上的李乘定义为$ [A, B] = AB-BA $, 其中$ A, B\in L_{n}(R) $. 2009年, 作者们在文献[11]中证明了$ L_{n}(R)\; (n\geq3) $是完备李代数; 2013年, 文献[12]证明了$ L_{n}(R)(n\geq 5) $上BZ导子的分解式唯一, 进一步得出$ L_{n}(R)\; (n\geq 5) $是完备李代数.由于$ L_{n}(R) $是完备李代数, 所以$ L_{n}(R) $上的导子都是内导子.本文将利用这一结果证明$ L_{n}(R)(n\geq 3) $上的2 -局部导子和局部导子是导子.
定义$ L_{n}(R) $上李乘为$ \left [ A, B \right ] = AB-BA $, $ A, B\in L_{n}(R) $.设$ E_{ij} $为$ (i, j) $位置为1, 其余位置为0的$ n $阶方阵.令$ A_{ij} = E_{ij}-E_{ji} $, 则$ A_{ij}\in L_{n}(R) $, $ A_{ij} = -A_{ji} $, $ A_{ii} = 0 $.根据$ L_{n}(R) $上李乘的定义可知
本文选择$ \left \{ A_{kl}|{1\leqslant k<l\leqslant n} \right \} $作为$ L_{n}\left ( R \right ) $的一组基底.设$ X = \sum\limits_{1\leq k<l\leq n}x_{kl}A_{kl}\in L_{n}(R) $, $ x_{kl}\in R $, 那么
定义2.1[13] 令$ R $是有1的交换环, $ L $是$ R $上的李代数.若$ R $ -线性映射$ \phi :L\rightarrow L $满足
则称$ \phi $为导子.特别的, 任意$ z\in L $, $ \mathrm{ad}z:L\rightarrow L $, $ \mathrm{ad}z(x) = [z, x], x\in L $也是一个导子, 称这种形式的导子为内导子.
定义2.2[14] 令$ R $是有1的交换环, $ L $是$ R $上的李代数.若满足
(ⅰ) $ Z(L) = \{x\in L|[x, y] = 0, y\in L\} = 0 $,
(ⅱ) $ L $的导子都是内导子,
则称$ L $是完备李代数.
命题2.3 (见文献[11, Theorem 3.2])令$ R $是有1的2 -挠自由交换环, 那么$ L_{n}(R)\; (n\geq3) $是完备李代数.
定义2.4[6] 令$ R $是有1的交换环, $ L $是$ R $上的李代数.若$ R $ -线性映射$ \Delta :L\rightarrow L $满足:对于任意$ x \in L $都存在一个导子$ D_{x} $$ ( $与$ x $有关$ ) $使得$ \Delta(x) = D_{x}(x) $, 则称$ \Delta $为$ L $的局部导子.
定义2.5[10] 令$ R $是有1的交换环, $ L $是$ R $上的李代数.若映射$ \mathrm{T}:L\rightarrow L $满足:对于任意$ x, y \in L $都存在一个导子$ D_{x, y} $$ ( $与$ x, y $有关$ ) $使得$ \mathrm{T}(x) = D_{x, y}(x) $, $ \mathrm{T}(y) = D_{x, y}(y) $, 则称$ \mathrm{T} $为$ L $的2 -局部导子.
显然, 导子是局部导子, 也是2 -局部导子.反之, 不一定成立.
下文设$ \mathrm{T} $和$ \Delta $分别是$ L_{n}(R) $上的2 -局部导子和局部导子.
由命题2.3直接可得$ L_{n}(R)\; (n\geq 3) $上的导子都是内导子, 因此对于任意$ A, B\in L_{n}(R) $, 存在$ M_{A, B}\in L_{n}(R) $, 满足$ \mathrm{T}(x) = [M_{A, B}, A] $, $ \mathrm{T}(y) = [M_{A, B}, B] $.对于任意$ A\in L_{n}(R) $, 存在$ M_{A}\in L_{n}(R) $, 满足$ \Delta(x) = [M_{A}, A] $.
根据局部导子定义可得, 存在$ A\in L_{n}(R)\; (n\geq3) $使得$ \Delta(A_{12}) = [A, A_{12}] $.令$ \Delta^{'} = \Delta-\mathrm{ad}A $, 则$ \Delta^{'}(A_{12}) = 0 $.显然, 如果$ \Delta^{'} $是导子, 那么$ \Delta $是导子.下文中用$ \Delta $表示$ \Delta^{'} $, 并将证明$ \Delta $是一个导子.
引理3.1 设$ \Delta $是$ L_{3}(R) $上的局部导子.若$ \Delta(A_{12}) = 0 $, 则$ \Delta $是导子.
证 显然, $ A_{12}, A_{13}, A_{23} $可作为$ L_{3}(R) $的一组基.根据局部导子的定义, 存在$ x, y\in L_{3}(R) $, 使得$ \Delta(A_{13}) = [x, A_{13}] $, $ \Delta(A_{23}) = [y, A_{23}] $.设
那么$ \Delta(A_{13}) = -x_{1}A_{23}+x_{3}A_{12} $, $ \Delta(A_{23}) = y_{1}A_{13}-y_{2}A_{12} $.
对$ A_{12}+A_{13} $, 存在$ m\in L_{3}(R) $, $ m = m_{1}A_{12}+m_{2}A_{13}+m_{3}A_{23} $, 使得$ \Delta(A_{12}+A_{13}) = [m, A_{12}+A_{13}] $.因为$ \Delta $是线性映射, 所以$ \Delta(A_{12}+A_{13}) = \Delta(A_{12})+\Delta(A_{13}) $, 即$ [m, A_{12}+A_{13}] = 0+[x, A_{13}] = [x, A_{13}] $.将$ m $和$ x $的基底表示代入等式, 整理得$ x_{3} = m_{3} = 0 $.同理, 对$ A_{12}+A_{23} $和$ A_{13}+A_{23} $分别进行如上操作可得$ y_{2} = 0 $和$ x_{1} = y_{1} $.所以
令$ \Delta_{1} = \Delta-\mathrm{ad}(x_{1}A_{12}) $, 那么$ \Delta_{1}(A_{12}) = \Delta_{1}(A_{13}) = \Delta_{1}(A_{23}) = 0 $, 所以$ \Delta_{1} = 0 $, 即$ \Delta = \mathrm{ad}(x_{1}A_{12}) $.因此$ L_{3}(R) $上的局部导子$ \Delta $是导子.
在$ L_{n}(R)(n\geq4) $中, 当$ 3\leq j\leq n $时, 由局部导子定义可得, 存在
使得
引理3.2 设$ \Delta $是$ L_{n}(R)(n\geq4) $上的局部导子.若$ \Delta(A_{12}) = 0 $, 那么存在$ m\in L_{n}(R) $, 令$ \Delta_{1} = \Delta-\mathrm{ad}m $, 使得
且当$ 3\leq i<j\leq n $时, $ a_{ij}^{(j)} = a_{ij}^{(i)} $.
证 在引理3.2的证明中, 始终假设$ 3\leq i, j\leq n $.
根据局部导子定义, 存在$ x = \sum\limits_{1\leq k<l\leq n}x_{kl}A_{kl}\in L_{n}(R) $, $ y = \sum\limits_{1\leq k<l\leq n}y_{kl}A_{kl}\in L_{n}(R) $, 使得$ \Delta(A_{12}+A_{1j}) = [x, A_{12}+A_{1j}] $, $ \Delta(A_{12}+A_{2j}) = [y, A_{12}+A_{2j}] $.因为$ \Delta $是线性映射, 所以
即$ [x, A_{12}+A_{1j}] = [a^{(j)}, A_{1j}] $, $ [y, A_{12}+A_{2j}] = [b^{(j)}, A_{2j}], $
所以$ a_{1k}^{(j)} = x_{1k}, k = 3, \cdots, n, k\neq j $; $ x_{1k} = 0, k = 3, \cdots, n, k\neq j $, 即$ a_{1k}^{(j)} = 0, k = 3, \cdots, n, k\neq j $.同理$ b_{2k}^{(j)} = y_{2k}, k = 3, \cdots, n, k\neq j $; $ y_{2k} = 0, k = 3, \cdots, n, k\neq j $, 即$ b_{2k}^{(j)} = 0, k = 3, \cdots, n, k\neq j $.以上结果代入式(3.1), (3.2)式得
存在$ d = \sum\limits_{1\leq k<l\leq n}d_{kl}A_{kl}\in L_{n}(R) $, 使得$ \Delta(A_{1j}+A_{1i}) = [d, A_{1j}+A_{1i}] $, 不妨设$ i<j $.又因为$ \Delta(A_{1j}+A_{1i}) = \Delta(A_{1j})+\Delta(A_{1i}) $, 即$ [d-a^{(j)}, A_{1j}] = [a^{(i)}-d, A_{1i}] $, 所以
存在$ h = \sum\limits_{1\leq k<l\leq n}h_{kl}A_{kl}\in L_{n}(R) $, 满足$ \Delta(A_{1j}+A_{2j}) = [h, A_{1j}+A_{2j}] $.同理可得$ [h-a^{(j)}, A_{1j}] = [b^{(j)}-d, A_{2j}], $所以
存在$ z = \sum\limits_{1\leq k<l\leq n}z_{kl}A_{kl}\in L_{n}(R) $, 满足$ \Delta(A_{1j}+A_{2i}) = [z, A_{1j}+A_{2i}] $, 假设$ i\neq j $.同理可得$ [z, A_{1j}+A_{2i}] = [a^{j}, A_{1j}]+[b^{(i)}, A_{2i}] $.在上式展开式中有$ (z_{2j}-z_{1i})A_{12} = (a_{2j}^{(j)}-b_{1i}^{(i)})A_{12} $和$ (z_{2j}-z_{1i})A_{ij} = 0 $.所以$ z_{2j}-z_{1i} = a_{2j}^{(j)}-b_{1i}^{(i)} $, $ z_{2j}-z_{1i} = 0 $.因此
由式(3.5)第一个式子和式(3.6)可得
因此不妨设$ a = a_{12}^{(j)} $.
令$ m = aA_{12} $, $ \Delta_{1} = \Delta-\mathrm{ad}m $.将(3.7)和(3.8)式分别代入(3.3)和(3.4)式, 得
此时$ \Delta _{1}(A_{12}) = 0 $, 且$ \Delta_{1} $仍然是一个局部导子.
存在$ c = \sum\limits_{1\leq k<l\leq n}c_{kl}A_{kl}\in L_{n}(R) $, 使得
存在$ t = \sum\limits_{1\leq k<l\leq n}t_{kl}A_{kl}\in L_{n}(R) $, 满足$ \Delta_{1}(A_{12}+A_{ij}) = [t, A_{12}+A_{ij}] $.因为$ \Delta_{1} $是线性映射, 所以$ \Delta_{1}(A_{12}+A_{ij}) = \Delta_{1}(A_{12})+\Delta(A_{ij}) = \Delta(A_{ij}) $, 即$ [t, A_{12}+A_{ij}] = [c, A_{ij}] $.在展开式中有$ c_{1i}A_{1j} = (t_{1i}-t_{2j})A_{1j} $, $ c_{2i}A_{2j} = (t_{1j}+t_{2i})A_{2j} $, $ c_{1j}A_{1i} = (t_{2i}+t_{1j})A_{1i} $, $ -c_{2j}A_{2i} = (t_{1i}-t_{2j})A_{2i} $, 所以$ c_{1i} = t_{1i}-t_{2j} $, $ c_{2i} = t_{1j}+t_{2i} $, $ c_{1j} = t_{2i}+t_{1j} $, $ -c_{2j} = t_{1i}-t_{2j} $.因此
存在$ u = \sum\limits_{1\leq k<l\leq n}u_{kl}A_{kl}\in L_{n}(R) $, 满足$ \Delta_{1}(A_{1j}+A_{ij}) = [u, A_{1j}+A_{ij}] $.因为$ \Delta_{1} $是线性映射, 所以$ \Delta_{1}(A_{1j}+A_{ij}) = \Delta_{1}(A_{1j})+\Delta_{1}(A_{ij}) $, 即$ [u, A_{1j}+A_{ij}] = [c, A_{ij}]+[a^{(j)}-m, A_{1j}] $.式子展开后可得
由(3.9), (3.15)和(3.16)式可知, $ a_{2j}^{(j)} = b_{1j}^{(j)} = 0, 3\leq j\leq n $.
同理, 存在$ v = \sum\limits_{1\leq k<l\leq n}v_{kl}A_{kl}\in L_{n}(R) $, 满足$ \Delta_{1}(A_{1i}+A_{ij}) = [v, A_{1i}+A_{ij}] $.因为$ \Delta_{1} $是线性映射, 所以$ \Delta_{1}(A_{1i}+A_{ij}) = \Delta_{1}(A_{1i})+\Delta_{1}(A_{ij}) $, 即
式子展开后可得
将(3.14)–(3.21)式代入(3.11)–(3.13)式, 可得
引理证毕.
定理3.3 $ L_{n}(R)(n\geq 3) $上的局部导子$ \Delta $是导子.
证 由引理3.1可知, $ L_{3}(R) $上的局部导子都是导子, 所以只需证明$ n\geq4 $时结论成立.
因为$ \Delta_{1} $是线性映射, 所以如果对基底中任意两个元素$ A_{ij} $, $ A_{kl} $, $ 1\leq i, j, k, l\leq n $都满足以下等式
则对任意$ x\in L_{n}(R) $, $ y\in L_{n}(R) $, 都有$ [\Delta _{1}(x), y]+[x, \Delta _{1}(y)] = \Delta _{1}([x, y]) $成立, 即$ \Delta _{1} $是导子.现将基底分为四部分: $ A_{12} $, $ \left\{A_{1p}\right\}_{3\leq p\leq n} $, $ \left\{A_{2p}\right\}_{3\leq p\leq n} $, $ \left\{A_{pq}\right\}_{3\leq p<q\leq n} $.因此只需验证以下10个等式成立即可,
其中$ 3\leq i, j, k, l\leq n $, 且$ i, j, k, l $互不相等.
以下验证第7个等式成立, 不妨假设$ i<j<l $,
所以
由以上可得等式$ [\Delta _{1}(A_{ij}), A_{il}]+[A_{ij}, \Delta _{1}(A_{il})] = -\Delta _{1}(A_{jl}) $成立, 其余等式类似可得.因此$ \Delta_{1} $是导子, 根据命题2.3可知存在$ X\in L_{n}(R) $, 使得$ \Delta_{1} = \mathrm{ad}X $.所以
即$ \Delta $是一个导子.定理得证.
引理4.1 $ L_{n}(R)\; (n\geq 3) $上的2 -局部导子是线性映射.
证 用$ \mathrm{tr}(X) $表示矩阵$ X $的迹, 即$ X $的对角元素之和.令$ f(A, B) = \mathrm{tr}(AB), A, B\in L_{n}(R) $, 则
其中$ A, B, A_{1}, A_{2}, B_{1}, B_{2}\in L_{n}(R) $, $ r, t\in R $.
若$ x = \sum\limits_{1\leq k<l\leq n}x_{kl}A_{kl}\in L_{n}(R) $满足$ f(A, x) = 0 $, $ \forall A\in L_{n}(R) $, 那么$ f(x, A_{ij}) = -2x_{ij} = 0 $, $ 1\leq i<j \leq n $, 所以$ x_{ij} = 0 $, 即$ x = 0 $.
由以上可得$ f $是$ L_{n}(R) $上非退化的对称双线性型.
设$ \mathrm{T} $是$ L_{n}(R)(n\geq 3) $上的2 -局部导子, 那么对于任意$ A, B, C\in L_{n}(R) $, 有
所以$ \mathrm{T}(A+B) = \mathrm{T}(A)+\mathrm{T}(B) $.
对于任意$ A\in L_{n}(R), r\in R $, 存在$ M_{A, rA} $使得$ \mathrm{T}(A) = [M_{A, rA}, A] $, $ \mathrm{T}(rA) = [M_{A, rA}, rA] $,显然$ \mathrm{T}(rA) = r\mathrm{T}(A) $.因此$ \mathrm{T} $是线性映射.引理得证.
定理4.2 $ L_{n}(R)\; (n\geq 3) $上的2 -局部导子是导子.
证 由引理4.1知$ T $具有线性性, 因此只需证明$ [\mathrm{T}(A_{ij}), A_{kl}]+[A_{ij} $, $ \mathrm{T}(A_{kl})] = \mathrm{T}([A_{ij}, A_{kl}]) $成立即可.
分两种情况证明.
(ⅰ)当$ [A_{ij}, A_{kl}] = 0 $时, 根据2 -局部导子定义, 存在$ m\in L_{n}(R) $, 使得$ \mathrm{T}(A_{ij}) = [m, A_{ij}] $, $ \mathrm{T}(A_{kl}) = [m, A_{kl}] $, 那么
等式成立.
(ⅱ)当$ [A_{ij}, A_{kl}]\neq 0 $时, 不妨写成$ [A_{ij}, A_{is}] = -A_{js} $, 其中$ i<j<s $.根据2 -局部导子的定义, 存在
满足$ \mathrm{T}(A_{ij}) = [x, A_{ij}] = [m, A_{ij}] $, $ \mathrm{T}(A_{is}) = [y, A_{is}] = [m, A_{is}] $, $ \mathrm{T}(A_{js}) = [x, A_{js}] = [y, A_{js}] $.因此可得
将上式各项展开可得
即$ [x-m, A_{js}] = 0. $所以$ \mathrm{T}(A_{js}) = [x, A_{js}] = [m, A_{js}]. $因此
定理得证.