数学杂志  2018, Vol. 38 Issue (4): 682-692   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
高智娟
张彦林
肖建斌
多圆柱上加权Bloch空间上的加权复合算子
高智娟, 张彦林, 肖建斌    
杭州电子科技大学理学院, 浙江 杭州 310018
摘要:本文研究了Cn中单位多圆柱上的加对数权的Bloch空间和小Bloch空间上的加权复合算子.利用泛函分析的方法,获得了加权复合算子的有界性和紧性的充要条件,推广了Bloch空间的相关结论.
关键词多圆柱    加权Bloch空间    加权复合算子    有界性    紧性    
WEIGHTED COMPOSITION OPERATORS ON WEIGHTED BLOCH SPACE IN THE POLYDISC
GAO Zhi-juan, ZHANG Yan-lin, XIAO Jian-bin    
College of Science, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract: In this paper, we investigate weighted composition operators on the Bloch space and small Bloch space with logarithmic weight in the unit polydisc in Cn. By using the method of functional analysis, the necessary and sufficient conditions of the boundedness and compactness of weighted composition operators are obtained. Some corresponding results about Bloch space are extended.
Key words: polydisc     weighted Bloch space     weighted composition operator     boundedness     compactness    
1 引言

$U^{n}=\{z=(z_{1}, z_{2}, \cdots, z_{n}):|z_{i}|<1, i=1, 2, \cdots, n\}$表示$n$维复空间$C^{n}$中的单位多圆柱; $H(U^{n})$$H(U^{n}, U^{n})$分别表示$U^{n}$上全纯函数和全纯自映射的全体; $\partial U^{n}=\{z=(z_{1}, z_{2}, \cdots, z_{n})\in C^{n}:|z_{i}|=1, i=1, 2, \cdots, n\}$表示$U^{n}$的边界; $U^{n}$上加对数权的Bloch空间是满足

$ B_{{\log}}(U^{n})=\left\{f\in H(U^{n}):\|f\|_{\log}=\sup\limits_{z\in U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial f}{\partial z_{k} }(z)\right|<\infty\right\} $

的函数$f$的全体, 在范数$\|f\|_{B_{\log}}=|f(0)|+\|f\|_{\log}$下, $B_{\log}(U^{n})$空间是Banach空间.加对数权的小Bloch空间是满足

$ B_{0, \log}(U^{n})=\left\{f\in H(U^{n}):\lim\limits_{z\rightarrow \partial U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial f}{\partial z_{k} }(z)\right|=0\right\} $

的函数$f$的全体, 由于$B_{0, \log}(U^{n})\subseteq B_{\log}(U^{n})$, 所以$B_{0, \log}(U^{n})$$B_{\log}(U^{n})$的子空间.设$\psi\in H(U^{n}), \varphi\in H(U^{n}, U^{n}), z\in U^{n}, f\in H(U^{n})$, 加权复合算子定义为

$ (W_{\psi, \varphi}f)(z)=\psi(z)f(\varphi(z)). $

显然$W_{\psi, \varphi}$是线性算子.特殊地, 当$\psi(z)=1$时, $W_{1, \varphi}$即为通常的复合算子; 当$\psi(z)=z$时, $W_{\psi, z}$即为通常的点乘算子, 因此$W_{\psi, \varphi}$可以看成是复合算子和点乘算子的推广.在$n$维空间的单位多圆柱上, 文献[1, 2]研究了Bloch空间上的复合算子和加权复合算子, 文献[3]探讨了不同的$p$-Bloch和小$p$-Bloch空间上的加权复合算子, 文献[4]中给出了一个定义在$[0, 1)$上的非负函数$\mu$, 并研究了加正规权的Bloch型空间$B_{\omega}$$B_{\mu}$以及加正规权的小Bloch型空间$B_{\omega, 0}$$B_{\mu, 0}$上的复合算子, 他们分别给出了算子的有界性和紧性的充要条件.关于Bloch空间、加权Bloch空间以及其上的相关算子的其他研究成果见文献[6-10].

本文把文献[5]中的单位圆盘$D$推广到了$n$维空间的单位多圆柱上, 讨论了单位多圆柱上加对数权的Bloch空间和加对数权的小Bloch空间上的加权复合算子的有界性和紧性问题.

在本文中, $C$表示正的常数, 不同的地方可以表示不一样的正常数.

2 引理

为了得到本文的主要结果, 需要用到下面的几个引理.

引理2.1 如果$f\in B_{\log}(U^{n})$, 则$|f(z)|\leq\left(2+\sum\limits_{k=1}^{n}\ln(\ln\frac{2}{1-|z_{k}|})\right)\|f\|_{B_{\log}}$.特别地, 当$\displaystyle|z_{k}|>1-\frac{2}{e^{e^{2}}}~(k=1, 2, \cdots, n)$时, $|f(z)|\leq2\sum\limits_{k=1}^{n}\ln(\ln\frac{2}{1-|z_{k}|})\|f\|_{B_{\log}}$.

对任意的$f\in B_{\log}(U^{n})$, 有

$ \begin{align*} |f(z)|&\leq|f(0)|+\left|\int_{0}^{1}\frac{d}{dt}f(tz)dt\right|\leq|f(0)| +\sum\limits_{k=1}^{n}\int_{0}^{1}|z_{k}|\left|\frac{\partial f}{\partial z_{k}}(tz)\right|dt\\ &\leq\|f\|_{B_{\log}}+\|f\|_{B_{\log}}\sum\limits_{k=1}^{n}\int_{0}^{|z_{k}|}\frac{1}{(1-x)\ln\frac{2}{1-x}}dx\\ &\leq\|f\|_{B_{\log}}+\|f\|_{B_{\log}}\left[\sum\limits_{k=1}^{n}\ln(\ln\frac{2}{1-|z_{k}|})-\ln(\ln2)\right]\\ &\leq\left (2+\sum\limits_{k=1}^{n}\ln(\ln\frac{2}{1-|z_{k}|})\right )\|f\|_{B_{\log}}. \end{align*} $

引理2.2$\psi\in H(U^{n}), \varphi\in H(U^{n}, U^{n})$.则$W_{\psi, \varphi}$$B_{\log}(U^{n})$ ($B_{0, \log}(U^{n})$)上的紧算子当且仅当$W_{\psi, \varphi}$为有界算子并且对于$B_{\log}(U^{n})$ ($B_{0, \log}(U^{n})$)中在$U^{n}$的任意紧子集上一致趋于零的有界序列$\{f_{n}\}$, 当$n\rightarrow\infty$时, $\|W_{\psi, \varphi}f_{n}\|_{B_{\log}}\rightarrow0$.

只证$B_{\log}(U^{n})$空间的情形, $B_{0, \log}(U^{n})$空间的情形可类似证明.

$W_{\psi, \varphi}$$B_{\log}(U^{n})$上的紧算子, 显然$W_{\psi, \varphi}$$B_{\log}(U^{n})$上的有界算子.设$\{f_{n}\}$$B_{\log}(U^{n})$中的一有界列且当$n\rightarrow\infty$时, $\{f_{n}\}$$U^{n}$的任意紧子集上一致趋于零, 由紧算子的定义, $\{W_{\psi, \varphi}f_{n}\}$存在一个在$B_{\log}(U^{n})$中收敛的子列$\{W_{\psi, \varphi}f_{n_{k}}\}$.不妨设当$k\rightarrow\infty$时, $\{W_{\psi, \varphi}f_{n_{k}}\}$收敛于$f$, 于是$\|W_{\psi, \varphi}f_{n_{k}}-f\|_{B_{\log}}\rightarrow0$.由引理2.1, 对$U^{n}$的任意紧子集$K$都存在正常数$C$, 使得$\forall z\in K$都有

$|(W_{\psi, \varphi}f_{n_{k}})(z)-f(z)|\leq C\|W_{\psi, \varphi}f_{n_{k}}-f\|_{B_{\log}}. $

因此当$k\rightarrow\infty$时, $(W_{\psi, \varphi}f_{n_{k}})(z)-f(z)\rightarrow0$, 又由于$f_{n_{k}}\rightarrow0$, 所以$W_{\psi, \varphi}f_{n_{k}}\rightarrow0$, $f\rightarrow0$, 由$\{f_{n}\}$的任意性, 当$n\rightarrow\infty$时, $\|W_{\psi, \varphi}f_{n}\|_{B_{\log}}\rightarrow0$.

反之, 假设$W_{\psi, \varphi}$$B_{\log}(U^{n})$上不是紧的, 则存在一个$B_{\log}(U^{n})$中在$U^{n}$上的有界序列$\{g_{n}\}$, 使得$\{W_{\psi, \varphi}g_{n}\}$$B_{\log}(U^{n})$中没有收敛的子列.进一步, 再设$\{g_{n}\}$$U^{n}$的任意紧子集上一致有界, 那么由Montel定理知$\{g_{n}\}$是正规的, $\{g_{n}\}$存在一个在$U^{n}$的任意紧子集上一致收敛的子列$\{f_{n}\}$.不妨设$\{f_{n}\}$一致收敛于$f$, 那么$f'_{n}\rightarrow f'$, 并且$f\in B_{\log}(U^{n})$.从而序列$\{f_{n}-f\}$$B_{\log}(U^{n})$中有界且在$U^{n}$的任意紧子集上一致趋于零, 由题设当$n\rightarrow\infty$时, $\|W_{\psi, \varphi}(f_{n}-f)\|_{B_{\log}}\rightarrow0$, 这意味着$\{W_{\psi, \varphi}g_{n}\}$的子列$\{W_{\psi, \varphi}f_{n}\}$收敛于$W_{\psi, \varphi}f$, 矛盾.证毕.

引理2.3 如果$f\in B_{0, \log}(U^{n})$, 令$\displaystyle Q(z)=\sum\limits_{k=1}^{n}\ln(\ln\frac{2}{1-|z_{k}|})$, 那么$\displaystyle\lim\limits_{z\rightarrow\partial U^{n}}\frac{|f(z)|}{Q(z)}=0$.

由于$f\in B_{0, \log}(U^{n})$, 则$\forall \varepsilon>0$, $\exists~\delta\in (0, 1)$, 使得当$|z_{k}|>\delta~(k=1, 2, \cdots, n)$时,

$ \sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial f}{\partial z_{k} }(z)\right|<\varepsilon. $

$U^{n}(0, \delta)$表示以原点为中心的$\delta$邻域, 令

$ \displaystyle I=\sum\limits_{k=1}^{n}\int_{\delta}^{1}\frac{|z_{k}|}{(1-t|z_{k}|)\ln\frac{2}{1-t|z_{k}|}} \left(1-t^{2}|z_{k}|^{2}\right)\ln\frac{2}{1-t|z_{k}|}\left|\frac{\partial f}{\partial z_{k}}(tz)\right|dt. $

那么对任意的$f\in B_{0, \log}(U^{n})$, 有

$ \begin{equation} \begin{split} |f(z)|&\leq|f(0)|+\left|\int_{0}^{1}\frac{d}{dt}f(tz)dt\right|\leq|f(0)| +\sum\limits_{k=1}^{n}\int_{0}^{1}|z_{k}|\left|\frac{\partial f}{\partial z_{k}}(tz)\right|dt\\ &\leq|f(0)|+\sum\limits_{k=1}^{n}\max\limits_{\omega\in U^{n}(0, \delta)}\left|\frac{\partial f}{\partial z_{k}}(\omega)\right|+I\leq C+I. \end{split} \end{equation} $ (2.1)

$\displaystyle\lim\limits_{z\rightarrow\partial U^{n}}\frac{1}{Q(z)}=0$, 所以对上述$\varepsilon>0$, $\exists ~\eta\in (0, 1)$, 当${\rm dist}(z, \partial U^{n})<\eta$时,

$ \begin{equation} \begin{split} \frac{C}{Q(z)}<\varepsilon, \frac{C\|f\|_{B_{\log}}}{Q(z)}<\varepsilon. \end{split} \end{equation} $ (2.2)

固定$k~(1\leq k\leq n)$, 当$|z_{k}|<\delta$时,

$ \begin{align*} I&\leq\|f\|_{B_{\log}}\sum\limits_{k=1}^{n}\int_{\delta}^{1}\frac{|z_{k}|} {(1-t|z_{k}|)\ln\frac{2}{1-t|z_{k}|}}dt\\ &=\|f\|_{B_{\log}}\sum\limits_{k=1}^{n} \left(\ln(\ln\frac{2}{1-|z_{k}|})-\ln(\ln\frac{2}{1-\delta|z_{k}|})\right) <C\|f\|_{B_{\log}}, \end{align*} $

所以

$ \begin{equation} \begin{split} \frac{I}{Q(z)}<\frac{C\|f\|_{B_{\log}}}{Q(z)}<\varepsilon, \end{split} \end{equation} $ (2.3)

所以当$|z_{k}|>\delta$时,

$\begin{align*} I=\sum\limits_{k=1}^{n}\int_{\delta}^{1}\frac{|z_{k}|}{(1-t|z_{k}|)\ln\frac{2}{1-t|z_{k}|}} \left(1-t^{2}|z_{k}|^{2}\right) \ln\frac{2}{1-t|z_{k}|}\left|\frac{\partial f}{\partial z_{k}}(tz)\right|dt<C\varepsilon, \end{align*} $

从而

$ \begin{equation} \begin{split} \frac{I}{Q(z)}<C\varepsilon, \end{split} \end{equation} $ (2.4)

于是由(2.1)-(2.4)式, 结论成立.证毕.

3 $W_{\psi, \varphi}:B_{\log}(U^{n})\rightarrow B_{\log}(U^{n})$的有界性和紧性

本部分给出了加权复合算子$W_{\psi, \varphi}:B_{\log}(U^{n})\rightarrow B_{\log}(U^{n})$为有界算子和紧算子的充要条件.

定理3.1$\psi\in H(U^{n})$, $\varphi\in H(U^{n}, U^{n})$.则$W_{\psi, \varphi}$$B_{\log}(U^{n})$上的有界算子的充要条件是

(ⅰ) $\displaystyle\sup\limits_{z\in U^{n}}\sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|} $$\ln(\ln\frac{2}{1-|\varphi_{l}(z)|})\left|\frac{\partial\psi}{\partial z_{k}}(z)\right|<\infty$;

(ⅱ) $\displaystyle\sup\limits_{z\in U^{n}}\sum\limits_{k, l=1}^{n}\frac{(1-|z_{k}|^{2}) \ln\frac{2}{1-|z_{k}|}}{(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}}$$\left|\psi(z)\frac{\partial\varphi_{l}}{\partial z_{k}}(z)\right|<\infty$.

对任意的$f\in B_{\log}(U^{n})$, 由结论(ⅰ)-(ⅱ)及引理2.1得

$ \begin{align*} \|W_{\psi, \varphi}f\|_{\log}&\leq\sup\limits_{z\in U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)f(\varphi(z))\right|\\ &~~~~~+\sup\limits_{z\in U^{n}}\sum\limits_{k, l=1}^{n} \left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial f}{\partial \omega_{l}}(\varphi(z))\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\\ &\leq\sup\limits_{z\in U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)\right|\left (2+\sum\limits_{l=1}^{n}\ln(\ln\frac{2}{1-|\varphi_{l}(z)|})\right )\|f\|_{B_{\log}}\\ &~~~~~+\sum\limits_{k, l=1}^{n}\frac{(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}} {(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}}\left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\|f\|_{B_{\log}}\\ &\leq C\|f\|_{B_{\log}}. \end{align*} $

所以$\|W_{\psi, \varphi}f\|_{B_{\log}}=|\psi(0)f(\varphi(0))|+\|W_{\psi, \varphi}f\|_{\log}\leq C\|f\|_{B_{\log}}$, 于是$W_{\psi, \varphi}$$B_{\log}(U^{n})$上的有界算子.

反之, 设$W_{\psi, \varphi}$$B_{\log}(U^{n})$上的有界算子, 则对任意的$f\in B_{\log}(U^{n})$, 都存在常数$C$, 使得$\|W_{\psi, \varphi}\|_{B_{\log}}\leq C\|f\|_{B_{\log}}$.分别取$f(z)=1$$f(z)=z_{l}~(l=1, 2, \cdots, n)$, 则$\psi\in B_{\log}(U^{n})$, $\psi\varphi_{l}\in B_{\log}(U^{n})$, 结合$|\varphi_{l}(z)|<1$, 有

$ \begin{equation} \begin{split} \sup\limits_{z\in U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|<\infty. \end{split} \end{equation} $ (3.1)

对任意固定的$\omega\in U^{n}$, $|\omega|<1$和固定的$l~(1\leq l\leq n)$, 取测试函数

$ \begin{equation} \begin{split} f_{\omega}(z)=2\ln(\ln\frac{4}{1-\overline{\varphi_{l}(\omega)}z_{l}})- \left(\ln(\ln\frac{4}{1-|\varphi_{l}(\omega)|^{2}})\right)^{-1} \left(\ln(\ln\frac{4}{1-\overline{\varphi_{l}(\omega)}z_{l}})\right)^{2}, \end{split} \end{equation} $ (3.2)

通过计算$f_{\omega}\in B_{\log}(U^{n})$, $\|f_{\omega}\|_{B_{\log}}\leq C$, $\displaystyle f_{\omega}(\varphi(\omega))=\ln(\ln\frac{4}{1-|\varphi_{l}(\omega)|^{2}})$, $\displaystyle\frac{\partial f_{\omega}}{\partial z_{l}}(\varphi(\omega))=0$, 则有

$ \begin{align*} \|W_{\psi, \varphi}f_{\omega}\|_{B_{\log}}&\geq\sum\limits_{k=1}^{n} \left(1-|\omega_{k}|^{2}\right)\ln\frac{2}{1-|\omega_{k}|}\left|\frac{\partial \psi}{\partial \omega_{k}}(\omega)\right|\ln(\ln\frac{4}{1-|\varphi_{l}(\omega)|^{2}})\\ &\geq\sum\limits_{k=1}^{n} \left(1-|\omega_{k}|^{2}\right)\ln\frac{2}{1-|\omega_{k}|}\left|\frac{\partial \psi}{\partial \omega_{k}}(\omega)\right|\ln(\ln\frac{2}{1-|\varphi_{l}(\omega)|}). \end{align*} $

$\omega$的任意性, 对上式关于$\omega$取上确界, 可得结论(ⅰ)成立.同样的再取测试函数

$ \begin{equation} \begin{split} f_{\omega}(z)=\ln(\ln\frac{2}{1-\overline{\omega} z_{l}}), \end{split} \end{equation} $ (3.3)

通过计算$f_{\omega}\in B_{\log}(U^{n})$, $\|f_{\omega}\|_{B_{\log}}\leq C$, 如果$\forall z\in U^{n}$, $\varphi_{l}(z)\neq0$.令$\omega=\varphi_{l}(z)$, 那么由结论(ⅰ)得到

$ \begin{align*} \sum\limits_{k=1}^{n}\frac{(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}} {(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}} \left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|<\infty. \end{align*} $

如果$\forall z\in U^{n}$, $\varphi_{l}(z)=0$, 那么由(3.1)式

$ \begin{align*} &~~~~~\sup\limits_{z\in U^{n}}\sum\limits_{k, l=1}^{n} \frac{(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}}{(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}} \left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\\ &=\frac{1}{\ln2}\sup\limits_{z\in U^{n}}\sum\limits_{k, l=1}^{n} \left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|<\infty. \end{align*} $

因此结论(ⅱ)成立.证毕.

定理3.2$\psi\in H(U^{n})$, $\varphi\in H(U^{n}, U^{n})$.则$W_{\psi, \varphi}$$B_{\log}(U^{n})$上的紧算子的充要条件是

(ⅰ) $\displaystyle\lim\limits_{\varphi(z)\rightarrow\partial U^{n}}\sum\limits_{k, l=1}^{n} \left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\ln(\ln\frac{2}{1-|\varphi_{l}(z)|}) \left|\frac{\partial \psi}{\partial z_{k}}(z)\right|=0$;

(ⅱ) $\displaystyle\lim\limits_{\varphi(z)\rightarrow\partial U^{n}}\sum\limits_{k, l=1}^{n}\frac{(1-|z_{k}|^{2}) \ln\frac{2}{1-|z_{k}|}}{(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}} \left|\psi(z)\frac{\partial\varphi_{l}}{\partial z_{k}}(z)\right|=0$;

(ⅲ) $\psi\in B_{\log}(U^{n})$;

(ⅳ)对任意的$l=1, 2, \cdots, n$, 都有$\displaystyle\sup\limits_{z\in U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right) \ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial\varphi_{l}}{\partial z_{k}}(z)\right|<\infty$.

设结论(ⅰ)-(ⅳ)成立.假设$\{f_{n}\}$$B_{\log}(U^{n})$中在$U^{n}$的任意紧子集上一致趋于零的有界序列, 令$\sup\limits_{n}\|f_{n}\|_{B_{\log}}\leq L$, 由引理2, 仅需证明$\lim\limits_{n\rightarrow\infty}\|W_{\psi, \varphi}f_{n}\|=0$.而当$n\rightarrow\infty$时, $\psi(0)f_{n}(\varphi(0))\rightarrow0$, 因此这等价于证明下面的(3.4), (3.5)式同时成立.

$ \sup\limits_{z\in U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)f_{n}(\varphi(z))\right|\rightarrow 0, n\rightarrow\infty, $ (3.4)
$ \sup\limits_{z\in U^{n}}\sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial f_{n}}{\partial \omega_{l}}(\varphi(z))\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\rightarrow 0, n\rightarrow\infty. $ (3.5)

首先由结论(ⅰ)-(ⅱ), $\forall\varepsilon>0$, 都$\exists~\delta>0~(0<\delta<1)$, 当${\rm dist}(\varphi(z), \partial U^{n})<\delta$时,

$ \sum\limits_{k, l=1}^{n} \left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\ln(\ln\frac{2}{1-|\varphi_{l}(z)|})\left|\frac{\partial \psi}{\partial z_{k}}(z)\right|<\varepsilon, $ (3.6)
$ \sum\limits_{k, l=1}^{n}\frac{(1-|z_{k}|^{2}) \ln\frac{2}{1-|z_{k}|}}{(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}} \left|\psi(z)\frac{\partial\varphi_{l}}{\partial z_{k}}(z)\right|<\varepsilon. $ (3.7)

再设$K=\{\omega\in U^{n}:{\rm dist}(\omega, \partial U^{n})\geq\delta\}$, 则$K$$U^{n}$的一个紧集, 由假设及文献[4]中的引理3知$\{f_{n}\}$$\{\frac{\partial f_{n}}{\partial \omega_{l}}\}$$K$上收敛于零.当$z\in K$时, 结合结论(ⅲ), (ⅳ), 有

$ \sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|} \left|\frac{\partial \psi}{\partial z_{k}}(z)f_{n}(\varphi(z))\right|\leq\|\psi\|_{B_{\log}}\sup\limits_{z\in K}|f_{n}(\varphi(z))|<\varepsilon, $ (3.8)
$ \ \ \ \ \sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial f_{n}}{\partial \omega_{l}}(\varphi(z))\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\nonumber\\ \leq\sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\sup\limits_{z\in K}\left|\frac{\partial f_{n}}{\partial \omega_{l}}(\varphi(z))\right|<\varepsilon. $ (3.9)

$z\in U^{n}\backslash K$时, 由(3.6), (3.7)式并结合引理2.1, 有

$ \ \ \ \ \sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)f_{n}(\varphi(z))\right|\nonumber\\ \leq2\sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)\right|\ln(\ln\frac{2}{1-|\varphi_{l}(z)|})\|f_{n}\|_{B_{\log}}<\varepsilon, $ (3.10)
$ \ \ \ \ \sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|} \left|\psi(z)\frac{\partial f_{n}}{\partial \omega_{l}}(\varphi(z))\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\nonumber\\ \leq L\sum\limits_{k, l=1}^{n} \frac{(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}}{(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}} \left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|<\varepsilon, $ (3.11)

由(3.8)-(3.11)式可得(3.4), (3.5)式成立.

反之, 如果$W_{\psi, \varphi}$是紧算子, 则$W_{\psi, \varphi}$是有界算子, 分别取函数$f(z)=1$$f(z)=z_{l}$, 可得结论(ⅲ), (ⅳ)成立, 下证结论(ⅰ)成立.采用反证法, 假设(ⅰ)不成立, 则存在$\varepsilon_{0}>0$, $\{z^{m}\}\subset U^{n}$, $\varphi(z^{m})=(\varphi_{1}(z^{m}), \varphi_{2}(z^{m}), \cdots, \varphi_{n}(z^{m}))$, 当$m\rightarrow\infty$时, $\varphi(z^{m})\rightarrow \partial U^{n}$, 使得

$ \begin{align*} \sum\limits_{k, l=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|} \ln(\ln\frac{2}{1-|\varphi_{l}(z_k^m)|})\left|\frac{\partial \psi}{\partial z_{k}}(z^{m})\right|\geq n\varepsilon_{0}. \end{align*} $

不妨设

$ \begin{align*} \sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|} \ln(\ln\frac{2}{1-|\varphi_{1}(z_k^m)|})\left|\frac{\partial \psi}{\partial z_{k}}(z^{m})\right|\geq \varepsilon_{0}. \end{align*} $

情形1 如果$\lim\limits_{m\rightarrow\infty}|\varphi_{1}(z^{m})|=1$, 那么取函数

$ \begin{equation} \begin{split} f_{m}(z)=3\frac{(\ln(\ln\frac{4}{1-\overline{\varphi_{1}(z^{m})}z_{1}}))^{2}} {\ln(\ln\frac{4}{1-|\varphi_{1}(z^{m})|^{2}})}-2\frac{(\ln(\ln\frac{4}{1-\overline{\varphi_{1}(z^{m}})z_{1}}))^{3}} {(\ln(\ln\frac{4}{1-|\varphi_{1}(z^{m})|^{2}}))^{2}}, \end{split} \end{equation} $ (3.12)

通过计算$\|f_{m}\|_{B_{\log}}\leq C$$\{f_{m}\}$$U^{n}$的任意紧子集上一致收敛于零, 由引理2.2, 当$m\rightarrow\infty$时, $\|W_{\psi, \varphi}f_{m}\|_{B_{\log}}\rightarrow0$.但是

$ \begin{align*} \|W_{\psi, \varphi}f_{m}\|_{B_{\log}}&\geq\sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|} \ln(\ln\frac{4}{1-|\varphi_{1}(z^{m})|^{2}})\left|\frac{\partial \psi}{\partial z_{k}}(z^{m})\right|\\ &\geq\sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|} \ln(\ln\frac{2}{1-|\varphi_{1}(z^{m})|^{2}})\left|\frac{\partial \psi}{\partial z_{k}}(z^{m})\right|. \end{align*} $

$m\rightarrow\infty$得到$0\geq\varepsilon_{0}$, 这与$\varepsilon_{0}>0$矛盾.

情形2 如果$\lim\limits_{m\rightarrow\infty}|\varphi_{1}(z^{m})|<1$, 不妨设$|\varphi_{1}(z^{m})|\leq \lambda<1$, 由于当$m\rightarrow\infty$时, $\varphi(z^{m})\rightarrow\partial U^{n}$, 那么必存在$s~(1<s\leq n)$, 使得$\lim\limits_{m\rightarrow\infty}|\varphi_{s}(z^{m})|=1$.那么取函数

$ \begin{equation} \begin{split} \displaystyle f_{m}(z)=3\frac{(\ln(\ln\frac{4}{1-\overline{\varphi_{s}(z^{m})}z_{s}}))^{2}} {\ln(\ln\frac{4}{1-|\varphi_{s}(z^{m})|^{2}})}-2\frac{(\ln(\ln\frac{4}{1-\overline{\varphi_{s}(z^{m}})z_{s}}))^{3}} {(\ln(\ln\frac{4}{1-|\varphi_{s}(z^{m})|^{2}}))^{2}}, \end{split} \end{equation} $ (3.13)

由情形1的讨论可得

$ \begin{align*} \lim\limits_{m\rightarrow\infty}\sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|} \ln(\ln\frac{2}{1-|\varphi_{s}(z_k^m)|})\left|\frac{\partial \psi}{\partial z_{k}}(z^{m})\right|=0. \end{align*} $

再取函数$g_{m}(z)$为(3.12), (3.13)式中两个函数之和, 所以$\|g_{m}\|_{B_{\log}}\leq C$$\{g_{m}\}$$U^{n}$的任意紧子集上一致收敛于零, 而

$ \begin{align*} \|W_{\psi, \varphi}g_{m}\|_{B_{\log}}&\geq\sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|} \ln(\ln\frac{2}{1-|\varphi_{1}(z^{m})|})\left|\frac{\partial \psi}{\partial z_{k}}(z^{m})\right|\\ &-\sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|} \ln(\ln\frac{2}{1-|\varphi_{s}(z^{m})|})\left|\frac{\partial \psi}{\partial z_{k}}(z^{m})\right|. \end{align*} $

$m\rightarrow\infty$仍然得到矛盾, 因此结论(ⅰ)成立.同样地, 假设结论(ⅱ)不成立.不妨设

$ \begin{align*} \sum\limits_{k=1}^{n}\frac{(1-|z_k^m|^{2}) \ln\frac{2}{1-|z_k^m|}}{(1-|\varphi_{l}(z^{m})|^{2})\ln\frac{2}{1-|\varphi_{l}(z^{m})|}} \left|\psi(z^{m})\frac{\partial\varphi_{l}}{\partial z_{k}}(z^{m})\right|\geq\varepsilon_{0}. \end{align*} $

对于情形1, 设$\varphi_{1}(z^{m})=r_{1}e^{i\theta_{1}}$, 令函数

$ \begin{align*} h_{m}(z)=\int_{0}^{z_{1}}\left(\frac{r_{1}}{1-r_{1}e^{-i\theta_{1}}z}-\frac{r_1^2}{1-r_1^2e^{-i\theta_{1}}z}\right) \left(\ln\frac{4}{1-r_1^2e^{-i\theta_{1}}z}\right)^{-1}dz, \end{align*} $

通过计算$\|h_{m}\|_{B_{\log}}\leq C$$\{h_{m}\}$$U^{n}$的任意紧子集上一致收敛于零, 而由引理2.1, 有

$ \begin{align*} \|W_{\psi, \varphi}h_{m}\|_{B_{\log}} &\geq\sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|}\left|\psi(z^{m})\frac{\partial \varphi_{1}}{\partial z_{k}}(z^{m})\right|\left(\frac{r_{1}}{1-r_1^2}-\frac{r_1^2}{1-r_1^3}\right)\\& \left(\ln\frac{4}{1-r_1^3}\right)^{-1}\\ &~~~~~-2\sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|}\ln(\ln\frac{2}{1-|\varphi_{1}(z^{m})|}) \left|\frac{\partial \psi}{\partial z_{k}}(z^{m})\right|\|h_{m}\|_{B_{\log}}\\ &\geq\sum\limits_{k=1}^{n}\frac{(1-|z_k^m|^{2})\ln\frac{2}{1-|z_k^m|}|\psi(z^{m})\frac{\partial \varphi_{1}}{\partial z_{k}}(z^{m})||\varphi_{1}(z^{m})|}{6(1-|z_k^m|^{2})\ln\frac{2}{1-|z_k^m|}}\\ &~~~~~-C\sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|}\ln(\ln\frac{2}{1-|\varphi_{1}(z^{m})|}) \left|\frac{\partial \psi}{\partial z_{k}}(z^{m})\right|. \end{align*} $

$m\rightarrow\infty$, 由引理2.2并结合结论(ⅰ)得到矛盾.对于情形2, 由于$|\varphi_{1}(z^{m})|\leq\lambda<1$, 所以

$ \begin{align*} &~~~~~\sum\limits_{k=1}^{n}\frac{(1-|z_k^m|^{2})\ln\frac{2}{1-|z_k^m|}}{(1-|\varphi_{1}(z^{m})|^{2}) \ln\frac{2}{1-|\varphi_{1}(z^{m})|}}\left|\psi(z^{m})\frac{\partial \varphi_{1}}{\partial z_{k}}(z^{m})\right|\\ &\leq\frac{1}{\ln2(1-\lambda^{2})}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|}\left|\psi(z^{m})\frac{\partial \varphi_{1}}{\partial z_{k}}(z^{m})\right|. \end{align*} $

由于紧算子必是有界算子, 则由定理3.1的结论(ⅱ)得到

$ \begin{align*} \lim\limits_{m\rightarrow\infty}\sum\limits_{k=1}^{n}\left(1-|z_k^m|^{2}\right)\ln\frac{2}{1-|z_k^m|} \left|\psi(z^{m})\frac{\partial \varphi_{1}}{\partial z_{k}}(z^{m})\right|=0. \end{align*} $

这也得到了矛盾, 结论(ⅱ)成立.证毕.

4 $W_{\psi, \varphi}:B_{0, \log}(U^{n})\rightarrow B_{0, \log}(U^{n})$的有界性和紧性

本部分给出了加权复合算子$W_{\psi, \varphi}:B_{0, \log}(U^{n})\rightarrow B_{0, \log}(U^{n})$为有界算子和紧算子的充要条件.

定理4.1$\psi\in H(U^{n})$, $\varphi\in H(U^{n}, U^{n})$.则$W_{\psi, \varphi}$$B_{0, \log}(U^{n})$上的有界算子的充要条件是

(ⅰ) $\displaystyle\sup\limits_{z\in U^{n}}\sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|} \ln(\ln\frac{2}{1-|\varphi_{l}(z)|})\left|\frac{\partial \psi}{\partial z_{k}}(z)\right|<\infty;$

(ⅱ) $\displaystyle\sup\limits_{z\in U^{n}}\sum\limits_{k, l=1}^{n}\frac{(1-|z_{k}|^{2}) \ln\frac{2}{1-|z_{k}|}}{(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}} \left|\psi(z)\frac{\partial\varphi_{l}}{\partial z_{k}}(z)\right|<\infty;$

(ⅲ) $\psi\in B_{0, \log}(U^{n});$

(ⅳ)对任意的$l=1, 2, \cdots, n$都有$\displaystyle\lim\limits_{z\rightarrow\partial U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|} \left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|=0.$

设结论(ⅰ)-(ⅳ)成立.若$f\in B_{0, \log}(U^{n})$, 根据引理2.3, $\forall\varepsilon>0$, $\exists~\delta_{1}\in (0, 1)$, 当$|z_{k}|>\delta_{1}$, $z_{k}\in U^{n}$, $k=1, 2, \cdots, n$时, 有$\displaystyle|f(z)|<\varepsilon\sum\limits_{k=1}^{n}\left|\ln(\ln\frac{2}{1-|z_{k}|})\right|$.因此当$|\varphi_{l}(z)|>\delta_{1}$时, 根据结论(ⅰ)得到

$ \begin{equation} \begin{split} &\sum\limits_{k=1}^{n}(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)f(\varphi(z))\right|\\ <&\varepsilon\sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)\right|\left|\ln(\ln\frac{2}{1-|\varphi_{l}(z)|})\right|<C\varepsilon. \end{split} \end{equation} $ (4.1)

再由结论(ⅲ)知, 对上述$\varepsilon>0$, $\exists~\delta_{2}\in (0, 1)$, 当$|z_{k}|>\delta_{2}$, $z_{k}\in U^{n}, k=1, 2, \cdots, n$时,

$ \begin{align*} \sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)\right|<\varepsilon. \end{align*} $

因此当$|\varphi_{l}(z)|\leq\delta_{1}$$z_{k}>\delta_{2}$时, 结合引理2.1得到

$ \begin{equation} \begin{split} &\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)f(\varphi(z))\right|\\ \leq&\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)\right|\left(2+\sum\limits_{k=1}^{n}\ln(\ln\frac{2}{1-\delta_{1}})\right)\|f\|_{B_{\log}} <C\varepsilon. \end{split} \end{equation} $ (4.2)

因此由(4.1), (4.2)式, 当$|z_{k}|>\delta^{*}=\max\{\delta_{1}, \delta_{2}\}$时,

$ \begin{equation} \begin{split} \sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial \psi}{\partial z_{k}}(z)f(\varphi(z))\right|<C\varepsilon. \end{split} \end{equation} $ (4.3)

又由于$f\in B_{0, \log}$, 因此对上述$\varepsilon>0$, $\exists~\delta_{3}\in (0, 1)$, 当$|z_{k}|>\delta_{3}$, $z_{k}\in U^{n}$, $k=1, 2, \cdots, n$时, 有

$\begin{align*} \displaystyle\left|\frac{\partial f}{\partial z_{k}}(z)\right|<\frac{\varepsilon}{(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}}. \end{align*} $

因此当$|\varphi_{l}(z)|>\delta_{3}$时, 根据结论(ⅱ)得到

$ \begin{equation} \begin{split} &\sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial f}{\partial \omega_{l}}(\varphi(z))\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\\ <&\varepsilon\sum\limits_{k, l=1}^{n}\frac{(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}} {(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}}\left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|<C\varepsilon. \end{split} \end{equation} $ (4.4)

再由结论(ⅳ)知, 对上述$\varepsilon>0$, $\exists~\delta_{4}\in (0, 1)$, 当$|z_{k}|>\delta_{4}$, $z_{k}\in U^{n}$, $k=1, 2, \cdots, n$时, 有

$ \begin{align*} \sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|<\varepsilon, \end{align*} $

因此当$|\varphi_{l}(z)|\leq\delta_{3}$$|z_{k}|>\delta_{4}$, 得到

$ \begin{equation} \begin{split} &\sum\limits_{k, l=1}^{n}(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial f}{\partial \omega_{l}}(\varphi(z))\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\\ \leq&\sum\limits_{k, l=1}^{n}\frac{(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}} {(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}}\left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\|f\|_{B_{\log}}\\ \leq&\sum\limits_{k, l=1}^{n}\frac{(1-|z_{k}|^{2})\ln\frac{2}{1-|z_{k}|}} {(1-\delta_{3}^{2})\ln2}\left|\psi(z)\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\|f\|_{B_{\log}}\leq C\varepsilon. \end{split} \end{equation} $ (4.5)

因此由(4.4), (4.5)式, 当$|z_{k}|>\delta^{**}=\max\{\delta_{3}, \delta_{4}\}$时, 有

$ \begin{equation} \begin{split} \sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial f}{\partial \omega_{l}}(\varphi(z))\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\leq C\varepsilon. \end{split} \end{equation} $ (4.6)

因此由(4.3)和(4.6)式, 令$\delta=\max\{\delta^{*}, \delta^{**}\}$, 当$|z_{k}|>\delta$时, 有

$ \begin{align*} \sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left(\left|\frac{\partial \psi}{\partial z_{k}}(z)f(\varphi(z))\right| +\sum\limits_{l=1}^{n}\left|\psi(z)\frac{\partial f}{\partial \omega_{l}}(\varphi(z))\frac{\partial \varphi_{l}}{\partial z_{k}}(z)\right|\right)<C\varepsilon. \end{align*} $

$ \begin{align*} \lim\limits_{z\rightarrow\partial U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\frac{\partial (W_{\psi, \varphi }f)}{\partial z_{k}}(z)\right|=0. \end{align*} $

因此$W_{\psi, \varphi}f\in B_{0, \log}$.

反之, 假设$W_{\psi, \varphi}$$B_{0, \log}(U^{n})$上的有界算子.分别取$f(z)=1$$f(z)=z_{l}$, 得到$\psi, \psi\varphi_{l}\in B_{0, \log}(U^{n})$, 从而结论(ⅲ), (ⅳ)成立, 其余同定理3.1必要性的证明, 此处略去.证毕.

定理4.2$\psi\in H(U^{n})$, $\varphi\in H(U^{n}, U^{n})$.则$W_{\psi, \varphi}$$B_{0, \log}(U^{n})$上的紧算子的充要条件是

(ⅰ) $\displaystyle\lim\limits_{\varphi(z)\rightarrow\partial U^{n}}\sum\limits_{k, l=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|} \ln(\ln\frac{2}{1-|\varphi_{l}(z)|})\left|\frac{\partial \psi}{\partial z_{k}}(z)\right|=0;$

(ⅱ) $\displaystyle\lim\limits_{\varphi(z)\rightarrow\partial U^{n}}\sum\limits_{k, l=1}^{n}\frac{(1-|z_{k}|^{2}) \ln\frac{2}{1-|z_{k}|}}{(1-|\varphi_{l}(z)|^{2})\ln\frac{2}{1-|\varphi_{l}(z)|}} \left|\psi(z)\frac{\partial\varphi_{l}}{\partial z_{k}}(z)\right|=0;$

(ⅲ) $\psi\in B_{0, \log}(U^{n})$;

(ⅳ)对任意的$l=1, 2, \cdots, n$都有$\displaystyle\lim\limits_{z\rightarrow\partial U^{n}}\sum\limits_{k=1}^{n}\left(1-|z_{k}|^{2}\right)\ln\frac{2}{1-|z_{k}|}\left|\psi(z)\frac{\partial\varphi_{l}}{\partial z_{k}}(z)\right|=0.$

假设结论(ⅰ)-(ⅳ)成立, 由定理3.2知$W_{\psi, \varphi}$$B_{\log}(U^{n})$上是紧的, 又$B_{0, \log}(U^{n})$$B_{\log}(U^{n})$的闭子空间, 由定理4.1的证明知$\forall f\in B_{0, \log}(U^{n})$都有$W_{\psi, \varphi}f\in B_{0, \log}(U^{n})$, 因此$W_{\psi, \varphi}f$$B_{0, \log}(U^{n})$上是紧的.

反之, 设$W_{\psi, \varphi}f$$B_{0, \log}(U^{n})$上是紧的, 则结论(ⅲ), (ⅳ)显然成立, 并且由于定理3.2必要性的证明中所取的测试函数(3.12), (3.13)均是$B_{0, \log}(U^{n})$空间上一致有界的函数列, 与定理3.2必要性的证明类似仍能够得到矛盾, 因此结论(ⅰ), (ⅱ)成立.证毕.

参考文献
[1] Zhou Z, Shi J. Compact composition operators on the Bloch space in polydiscs[J]. Sci. China, Ser. A Math., 2001, 44(3): 286–291. DOI:10.1007/BF02878708
[2] 周泽华, 魏中齐. 多圆柱上的Bloch空间上的加权复合算子[J]. 数学杂志, 2005, 25(4): 435–440.
[3] 徐辉明, 刘太顺. 多圆柱上不同Bloch型空间之间的加权复合算子[J]. 数学年刊A辑(中文版), 2005, 26(1): 61–72.
[4] Hu Z. Composition operators between Bloch-type spaces in the polydiscs[J]. Sci. China, Ser. A Math., 2005, 48(s1): 268–282.
[5] 龙见仁, 吴鹏程. 加权Bloch空间上的加权复合算子[J]. 西南师范大学学报(自然科学版), 2011, 36(3): 30–37.
[6] Madigan K, Matheson A. Compact composition operators on the Bloch space[J]. Trans. Amer. Math. Soc., 1995, 347(7): 2679–2687. DOI:10.1090/tran/1995-347-07
[7] Yoneda R. The composition operators on weighted Bloch space[J]. Archiv der Mathematik, 2002, 78(4): 310–317. DOI:10.1007/s00013-002-8252-y
[8] Stroethoff K, Ohno S. Weigthed composition operators between Bloch-type space[J]. Rocky Mountain J. Math., 2003, 33(1): 191–216. DOI:10.1216/rmjm/1181069993
[9] Zhang X, Xiao J. Weigthed composition operators between μ-Bloch spaces on the unit ball[J]. Sci. China Math., 2005, 48(10): 1349–1368. DOI:10.1360/04ys0142
[10] Zhou Z, Zeng H. Composition operators between p-Bloch space and q-Bloch space in the unit ball[J]. Prog. Nat. Sci., 2003, 13(3): 233–236.