数学杂志  2018, Vol. 38 Issue (2): 345-352   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
崔永琴
周凤麟
徐洪焱
零级Dirichet级数的增长性及其Dirichlet-Hadamard乘积
崔永琴, 周凤麟, 徐洪焱    
景德镇陶瓷大学信息工程学院, 江西 景德镇 333403
摘要:本文研究了全平面上零级Dirichlet级数的增长性的问题.利用复级数理论,进一步讨论了在两种条件下Dirichlet级数的Dirichlet-Hadamard乘积的增长性,获得了零级Dirichlet级数及其Dirichlet-Hadamard乘积涉及对数级与对数型的几个关系定理,推广了孔荫莹等人的结果.
关键词对数级    对数型    Dirichlet级数    Dirichlet-Hadamard乘积    
THE GROWTH AND DIRICHLET-HADAMARD PRODUCT OF DIRICHLET SERIES WITH ZERO ORDER
CUI Yong-qin, Zhou Feng-lin, XU Hong-yan    
School of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
Abstract: The main purpose of this paper is to investigate the growth of Dirichlet series with zero order which converges in the whole complex plane. By using the theory of complex series, we further study the growth of Dirichlet-Hadamard product of Dirichlet series with zero order under two different conditions. Some relationship theorems concerning logarithmic order and logarithmic type between Dirichlet series and its Dirichlet-Hadamard product are obtained, which are improvement and extension of previous results given by Kong.
Key words: logarithmic order     logarithmic type     Dirichlet series     Dirichlet-Hadamard product    
1 引言及相关结果

考虑Dirichlet级数

$f(s)=\sum\limits_{n=0}^{\infty}a_ne^{\lambda_ns}, $ (1.1)

其中$\{a_n\}$是复数列, $0<\lambda_n\uparrow\infty$, $s=\sigma+it$ ($\sigma, t$是实变量).当级数(1.1)满足

$\limsup\limits_{n\rightarrow\infty}\frac{\log n}{\lambda_n}=0, \limsup\limits_{n\rightarrow\infty}\frac{\log|a_n|}{\lambda_n}=-\infty. $ (1.2)

这时, 根据文[1-2]的Valiron公式可得级数(1.1)的收敛横坐标及绝对收敛横坐标都是$+\infty$, 那么其和函数$f(s)$在全平面内解析, 即为整函数.

$f(s)$的最大模, 最大项为

$ \begin{eqnarray*}&&M(\sigma)=M(\sigma, f)=\sup\{|f(\sigma+it)|:t\in R\}, \\ &&m(\sigma)=m(\sigma, f)=\max\{|a_n|e^{\lambda_n\sigma}:n\in N^*\}.\end{eqnarray*} $

定义1.1 [3]$f(s)$是满足(1.2)式的整函数, 那么$f(s)$的级$\rho$定义为

$ \rho=\limsup\limits_{\sigma\rightarrow+\infty}\frac{\log\log M(\sigma, f)}{\sigma}. $ (1.3)

$\rho=0$, 级数(1.1)是全平面上的零级Dirichlet级数.此时定义该级数(1.1)的对数级$\rho^*$

$ \rho^*=\limsup\limits_{\sigma\rightarrow+\infty}\frac{\log\log M(\sigma, f)}{\log\sigma}, $ (1.4)

$\rho^*\in (1, +\infty)$时, Dirichlet级数的对数型$T^*$如下

$T^*=\limsup\limits_{\sigma\rightarrow+\infty}\frac{\log M(\sigma)}{\sigma^{\rho^*}}. $ (1.5)

关于整函数的增长性的问题, Hardy、余家荣、孙道椿、高宗升等已经得到了许多经典的结论[1-2, 4-6]. Sayyed, Metwally [7]讨论了泰勒级数的对数级, 而对复平面上的零级Dirichlet级数增长性的研究较少. 2006年, 田宏根、孙道椿、郑承民在相对较宽的条件下, 对该问题进行深入的研究并得到了由系数表示的零级Dirichlet级数的对数级的结果.

定理 A [3]$f(s)$是满足(1.2)式的整函数, 则

$ \rho^*=1+ \limsup\limits_{n\rightarrow\infty}\frac{\log\lambda_n}{\log\log|a_n|^{-1}-\log\lambda_n}. $ (1.6)

本文将继续研究了零级Dirichlet级数的对数型, 得到如下结果.

定理 1.1$f(s)$是满足(1.2)式的整函数, 则

$T^*=\frac{(\rho^*-1)^{\rho^*-1}}{(\rho^*)^{\rho^*}}T, $ (1.7)

这里

$ T=\limsup\limits_{n\rightarrow\infty}\frac{\lambda_n}{(\frac{1}{\lambda_n}\log|a_n|^{-1})^{\rho^*-1}}.$

2009年, 孔荫莹在文[9-10]构造了Dirichlet-Hadamard乘积并得到了有限级及无穷级Dirichlet级数在该乘积下的增长性的相关结果. 2015年, 崔永琴等在文[11]构造了新型的Dirichlet-Hadamard乘积进一步推广了文[9, 10]的结果.

然而, 对于零级Dirichlet级数的Hadamard乘积的增长性并未有人涉及.本文将主要考察零级Dirichlet级数的Dirichlet-Hadamard乘积的对数级与对数型, 在介绍主要结果前, 我们先给出如下Dirichlet-Hadamard乘积定义.

定义 1.2 [11]$f_1(s)=\sum\limits_{n=1}^\infty a_ne^{\gamma_ns}$, $f_2(s)=\sum\limits_{n=1}^\infty b_ne^{\xi_ns}$$f_1(s), f_2(s)$是满足(1.2)式的整函数.若$\alpha, \beta$为两个实常数满足$0<\alpha, \beta<\infty$, 构造它们的Dirichlet-Hadamard乘积如下

$ F(s)=(f_1\Delta f_2)(\mu, v;\alpha, \beta;s)=\sum\limits_{n=1}^\infty c_ne^{\lambda_ns}, c_n=a_n^\mu b_n^v, \lambda_n=\alpha\gamma_n+\beta\xi_n, $ (1.8)

其中$\mu$$v$是正实数; $\{a_n\}, \{b_n\}\subset \mathbb{C}, 0<\gamma_n, \xi_n\uparrow\infty$.

$\alpha=\beta=\frac{1}{2}$, 则定义1.2中的Dirichlet-Hadamard乘积$F(s)$即为孔荫莹的Dirichlet-Hadamard乘积$G(s)$, 即

$ G(s)=(f_1\Delta f_2)(\mu, v;s)=\sum\limits_{n=1}^\infty c_ne^{\lambda_ns}, c_n=a_n^\mu b_n^v, \lambda_n=\frac{\gamma_n+\xi_n}{2}. $

定理 1.2$f_1(s), f_2(s)$是满足(1.2)式的整函数, 它们的对数级分别为$\rho^*_1$$\rho^*_2$, 且

$\gamma_n\sim\xi_n (n\rightarrow\infty), $ (1.9)

则Dirichlet-Hadamard乘积$F(s)$的对数级$\rho^*$满足$\rho^*\leq\min\{\rho^*_1, \rho^*_2\}.$特别地, 当$\rho^*=\rho^*_1$时, $F(s)$的对数型$T^*$满足

$ T^*\leq \left\{\begin{aligned} &\frac{1}{(\rho_1^*)^{\rho_1^*}}(\frac{\rho_1^*-1}{\mu})^{\rho_1^*-1}, \rho_1^*<\rho_2^*, \\ &\frac{1}{(\rho_1^*)^{\rho_1^*}}(\frac{\rho_1^*-1}{\mu+v})^{\rho_1^*-1}, \rho_1^*=\rho_2^*. \end{aligned}\right. $

推论 1.1$f_1(s), f_2(s)$是满足(1.2)式的整函数, 它们的对数级分别为$\rho_1^*$$\rho_2^*$, 且满足(1.9)式, 则其Dirichlet-Hadamard乘积$G(s)$的对数级$\rho^*$满足$\rho^*\leq\min\{\rho_1^*, \rho_2^*\}.$特别地, 当$\rho^*=\rho_1^*$, $G(s)$对数型$T^*$满足

$ T^*\leq \left\{\begin{aligned} &\frac{1}{(\rho_1^*)^{\rho_1^*}}(\frac{\rho_1^*-1}{\mu})^{\rho_1^*-1}, \rho_1^*<\rho_2^*, \\ &\frac{1}{(\rho_1^*)^{\rho_1^*}}(\frac{\rho_1^*-1}{\mu+v})^{\rho_1^*-1}, \rho_1^*=\rho_2^*. \end{aligned}\right. $

接下来, 在放宽条件的前提下进一步讨论Dirichlet-Hadamard乘积形式的增长性, 得到如下结果.

定理 1.3$f_1(s), f_2(s)$是满足(1.2)式的整函数, 它们的对数级分别为$\rho_1^*$$\rho_2^*$, 且

$\gamma_n=\eta\xi_n, $ (1.10)

则其Dirichlet-Hadamard乘积$F(s)$的对数级$\rho^*$满足$\rho^*\leq\min\{\rho_1^*, \rho_2^*\}.$特别地, 当$\rho^*=\rho_1^*$, $F(s)$对数型$T^*$满足

$ T^*\leq \left\{\begin{aligned} &(\frac{\alpha\eta+\beta}{\eta\rho_1})^{\rho_1^*}(\frac{\rho_1^*-1}{\mu})^{\rho_1^*-1}, \rho_1^*<\rho_2^*, \\ &(\frac{\alpha\eta+\beta}{\rho_1^*})^{\rho_1^*}(\frac{\rho_1^*-1}{\mu\eta^{\rho_1^*} +v})^{\rho_1^*-1}, \rho_1^*=\rho_2^*. \end{aligned}\right. $

推论 1.2$f_1(s), f_2(s)$是满足(1.2)式的整函数, 它们的对数级分别为$\rho_1^*$$\rho_2^*$, 且满足(1.10)式, 则其Dirichlet-Hadamard乘积$G(s)$的对数级$\rho^*$满足$\rho^*\leq\min\{\rho_1^*, \rho_2^*\};$$\rho^*=\rho_1^*$, $G(s)$对数型$T^*$满足

$ T^*\leq \left\{\begin{aligned} &(\frac{\eta+1}{2\eta\rho_1^*})^{\rho_1^*}(\frac{\rho_1^*-1}{\mu})^{\rho_1^*-1}, \rho_1^*<\rho_2^*, \\ &(\frac{\eta+1}{2\rho_1^*})^{\rho_1^*}(\frac{\rho_1^*-1}{\mu\eta^{\rho_1^*}+v})^{\rho_1^*-1}, \rho_1^*=\rho_2^*. \end{aligned}\right. $
2 若干引理

引理2.1 [11]$f_1(s), f_2(s)$是满足(1.2)式的整函数, 且满足(1.9)式, 那么其Dirichlet-Hadamard乘积$F(s)$是整函数.

引理 2.2$f_1(s), f_2(s)$是满足(1.2)式的整函数, 且满足(1.10)式, 那么其Dirichlet-Hadamard乘积$F(s)$是整函数.

$ \limsup\limits_{n\rightarrow\infty}\frac{\log n}{\lambda_n} =\limsup\limits_{n\rightarrow\infty}\frac{\log n}{\alpha\gamma_n+\beta\xi_n} \leq \frac{1}{\alpha}\limsup\limits_{n\rightarrow\infty}\frac{\log n}{\gamma_n}=0, $

$ \limsup\limits_{n\rightarrow\infty}\frac{\log |c_n|}{\lambda_n} =\limsup\limits_{n\rightarrow\infty}\frac{\mu\log |a_n|+\nu\log |b_n|}{\alpha\gamma_n+\beta\xi_n} \leq \limsup\limits_{n\rightarrow\infty}\frac{\mu\log |a_n|}{\alpha\gamma_n+\beta\xi_n}=-\infty. $

所以其Dirichlet-Hadamard乘积$F(s)$是整函数.

引理 2.3$a, b (b>1)$是一正的常数, $x$是任一正实数, 那么函数$\psi(\sigma)=a\sigma^b-x\sigma (-\infty<\sigma<+\infty)$$\sigma=(\frac{x}{ab})^{\frac{1}{b-1}}$时达到最小值$a(\frac{x}{ab})^{\frac{b}{b-1}}-x(\frac{x}{ab})^{\frac{1}{b-1}}.$

$\psi'(\sigma)=ab\sigma^{b-1}-x$, 令$\psi'(\sigma)=0$解得$\sigma=(\frac{x}{ab})^{\frac{1}{b-1}}$.

可验证当$\sigma=(\frac{x}{ab})^{\frac{1}{b-1}}$$\psi(\sigma)$取得最小值$a(\frac{x}{ab})^{\frac{b}{b-1}}-x(\frac{x}{ab})^{\frac{1}{b-1}}.$

引理 2.4$a, b (b>1)$是一正的常数, $\sigma$是任一实数, 那么函数$\varphi(x)=-\frac{1}{a}x^b+\sigma x$$x=(\frac{a\sigma}{b})^{\frac{1}{b-1}}$时达到最大值$-\frac{1}{a}(\frac{a\sigma}{b})^{\frac{b}{b-1}}+\sigma(\frac{a\sigma}{b})^{\frac{1}{b-1}}.$

$\varphi'(x)=-\frac{b}{a}x^{b-1}+\sigma$, 令$\varphi'(x)=0$解得$x=(\frac{a\sigma}{b})^{\frac{1}{b-1}}$.

可验证当$x=(\frac{a\sigma}{b})^{\frac{1}{b-1}}$$\varphi(x)$达到最大值$-\frac{1}{a}(\frac{a\sigma}{b})^{\frac{b}{b-1}}+\sigma(\frac{a\sigma}{b})^{\frac{1}{b-1}}.$

3 定理的证明

定理1.1的证明 先证$T^*\geq T\frac{(\rho^*-1)^{\rho^*-1}}{(\rho^*)^{\rho^*}}$.

$T^*$的定义知, $\forall \varepsilon>0$, 有充分大的$\sigma$使

$\frac{\log M(\sigma)}{\sigma^{\rho^*}}<T^*+\varepsilon, $

从而

$\log |a_n|<(T^*+\varepsilon)\sigma^{\rho^*}-\lambda_n\sigma.$

由引理2.3知, 取$\sigma=(\frac{\lambda_n}{(T^*+\varepsilon)\rho^*})^{\frac{1}{\rho^*-1}}$, 则

$ \begin{aligned} \log|a_n| &<(T^*+\varepsilon)[(\frac{\lambda_n}{(T^*+\varepsilon)\rho^*})^{\frac{1}{\rho^*-1}}]^{\rho^*}- \lambda_n(\frac{\lambda_n}{(T^*+\varepsilon)\rho^*})^{\frac{1}{\rho^*-1}}\\ &=\lambda_n^{\frac{\rho^*}{\rho^*-1}}\frac{1}{[(T^*+\varepsilon)\rho^*]^{\frac{1}{\rho^*-1}}}\frac{1-\rho^*}{\rho^*}. \end{aligned} $

所以

$ \begin{aligned} \frac{\lambda_n}{(\frac{1}{\lambda_n}\log|a_n|^{-1})^{\rho^*-1}} &<\frac{\lambda_n}{(\frac{1}{\lambda_n}\lambda_n^{\frac{\rho^*}{\rho^*-1}})^{\rho^*-1}}(\frac{\rho^*}{\rho^*-1})^{\rho^*-1}(T^*+\varepsilon)\rho^*\\ &=\frac{(\rho^*)^{\rho^*}}{(\rho^*-1)^{\rho^*-1}}(T^*+\varepsilon). \end{aligned} $

$\varepsilon$的任意性知

$T\leq\frac{(\rho^*)^{\rho^*}}{(\rho^*-1)^{\rho^*-1}}T^*.$

假设等号不成立, 即存在$T_1$使得$T<T_1<\frac{(\rho^*)^{\rho^*}}{(\rho^*-1)^{\rho^*-1}}T^*$, 于是存在$N_1>0$, 当$n>N_1$时,

$\frac{\lambda_n}{(\frac{1}{\lambda_n}\log|a_n|^{-1})^{\rho^*-1}}<T_1, $

$|a_n|<e^{-\lambda_n^{\frac{\rho^*}{\rho^*-1}}T_1^{-\frac{1}{\rho^*-1}}}.$

由(1.2)式知存在一常数$M$, $N_2>N_1$, 使得$n>N_2$时有$\lambda_n>M\log n$, 于是

$M(\sigma, f)\leq \sum\limits_{n=1}^{N_1}|a_n|e^{\lambda_n\sigma}+\sum\limits_{N_1+1}^{N_2}|a_n|e^{\lambda_n\sigma}+\sum\limits_{N_2+1}^{\infty}|a_n|e^{\lambda_{n+1}\sigma}, $ (3.1)

其中$\sum\limits_{n=1}^{N_1}|a_n|e^{\lambda_n\sigma}$为有界量,

$\sum\limits_{N_1+1}^{N_2}|a_n|e^{\lambda_n\sigma}\leq\sum\limits_{N_1+1}^{N_2}e^{-\lambda_n^{\frac{\rho^*}{\rho^*-1}}T_1^{-\frac{1}{\rho^*-1}}}e^{\lambda_n\sigma} =\sum\limits_{N_1+1}^{N_2}e^{-\lambda_n^{\frac{\rho^*}{\rho^*-1}}T_1^{-\frac{1}{\rho^*-1}}+\lambda_n\sigma}, $

由引理2.4知, 取$\lambda_n=(\frac{\sigma(\rho^*-1)}{\rho^*})^{\rho^*-1}T_1$, 有

$\sum\limits_{N_1+1}^{N_2}|a_n|e^{\lambda_n\sigma}\leq N_2e^{T_1\frac{(\rho^*-1)^{\rho^*-1}}{(\rho^*)^{\rho^*}}\sigma^{\rho^*}}.$ (3.2)

再由(1.2)式知$\lambda_{n+1}\leq (1+\varepsilon)\lambda_n, $对所有的$n\in N_+$成立, 记$\lambda_n>T_1((1+\varepsilon)\sigma+\frac{2}{M})^{\rho^*-1}$.所以

$\begin{aligned} \sum\limits_{N_2+1}^{\infty}|a_n|e^{\lambda_{n+1}\sigma}\leq \sum\limits_{N_2+1}^{\infty}e^{-\lambda_n^{\frac{\rho^*}{\rho^*-1}}T_1^{-\frac{1}{\rho^*-1}}}e^{\lambda_{n+1}\sigma} \leq \sum\limits_{N_2+1}^{\infty} e^{(\lambda_{n+1}-(1+\varepsilon))\sigma-\lambda_n\frac{2}{M}} \leq\sum\limits_{N_2+1}^{\infty} \frac{1}{n^2}. \end{aligned} $ (3.3)

由(3.1)-(3.3)式知, 对充分大的$\sigma$

$\frac{\log M(\sigma, f)}{\sigma^{\rho^*}}\leq T_1\frac{(\rho^*-1)^{\rho^*-1}}{(\rho^*)^{\rho^*}}(1+o(1)).$

从上式得到$T^*\leq T_1 \frac{(\rho^*-1)^{\rho^*-1}}{(\rho^*)^{\rho^*}}$与假设矛盾, 故$T= \frac{(\rho^*)^{\rho^*}}{(\rho^*-1)^{\rho^*-1}}T^*, $定理1.1得证.

定理1.2的证明 由定理A可知$\forall \varepsilon>0$, 存在两个正整数$N_1, N_2$, 当$n>N =\max\{N_1, N_2\}$时, 有

$\frac{\log\gamma_n}{\log(\frac{1}{\gamma_n}\log|a_n|^{-1})} <\rho^*_1-1+\varepsilon, \frac{\log\xi_n}{\log(\frac{1}{\xi_n}\log|b_n|^{-1})} <\rho^*_2-1+\varepsilon, $

$\log|a_n|^{-1}>\gamma_n\gamma_n^{\frac{1}{\rho^*_1-1+\varepsilon}}, \log|b_n|^{-1}>\xi_n\xi_n^{\frac{1}{\rho^*_2-1+\varepsilon}}. $

$c_n$的定义有

$ \begin{aligned} \log|c_n|^{-1}=\mu\log|a_n|^{-1}+v\log|b_n|^{-1} >\mu\gamma_n\gamma_n^{\frac{1}{\rho^*_1-1+\varepsilon}}+v\xi_n\xi_n^{\frac{1}{\rho^*_2-1+\varepsilon}}, \end{aligned} $ (3.4)

$ \begin{aligned} \frac{\log\lambda_n}{\log(\frac{1}{\lambda_n}\log|c_n|^{-1})} &<\frac{\log\lambda_n}{\log(\mu\frac{\gamma_n}{\lambda_n}\gamma_n^{\frac{1}{\rho^*_1-1+\varepsilon}}+v \frac{\xi_n}{\lambda_n}\xi_n^{\frac{1}{\rho^*_2-1+\varepsilon}})}\\ &=\frac{\log\lambda_n}{\frac{\rho^*_1+\varepsilon}{\rho^*_1-1+\varepsilon}\log\gamma_n+\log(\mu+v \frac{\xi_n}{\gamma_n}\frac{\xi_n^{\frac{1}{\rho^*_2-1+\varepsilon}}}{\gamma_n^{\frac{1}{\rho^*_1-1+\varepsilon}}})-\log\lambda_n}. \end{aligned} $

由于$\lambda_n=\alpha\gamma_n+\beta\xi_n, \gamma_n\sim\xi_n (n\rightarrow\infty)$, 可得

$\log\gamma_n\sim\log\xi_n\sim\log\lambda_n (n\rightarrow\infty).$

由引理2.1知$F(s)$是整函数, 不妨设$\rho^*_1<\rho^*_2$, 又由$\varepsilon$的任意性, 得

$\rho^*=1+\limsup\limits_{n\rightarrow\infty} \frac{\log\lambda_n}{\log(\frac{1}{\lambda_n}\log|c_n|^{-1})}\leq 1+\frac{1}{\frac{\rho^*_1}{\rho^*_1-1}-1}=\rho^*_1, $

所以$\rho^*\leq\min\{\rho^*_1, \rho^*_2\}.$

特别地, 当$\rho^*=\rho^*_1$, 由定理1.1可知

$ \begin{aligned} &\frac{(\rho^*_1-1)^{\rho^*_1-1}}{(\rho^*_1)^{\rho^*_1}}\frac{\lambda_n}{(\frac{1}{\lambda_n}\log|c_n|^{-1})^{\rho^*_1-1}}\\ <&\frac{(\rho^*_1-1)^{\rho^*_1-1}}{(\rho^*_1)^{\rho^*_1}}\frac{\lambda_n}{(\mu\frac{\gamma_n}{\lambda_n}\gamma_n^{\frac{1}{\rho^*_1-1+\varepsilon}} +v\frac{\xi_n}{\lambda_n}\xi_n^{\frac{1}{\rho^*_2-1+\varepsilon}})^{\rho^*_1-1}}\\ =&\frac{(\rho^*_1-1)^{\rho^*_1-1}}{(\rho^*_1)^{\rho^*_1}}\frac{\lambda_n}{\frac{1}{\lambda_n^{\rho^*_1-1}}\gamma_n^{\frac{\rho^*_1+\varepsilon} {\rho^*_1-1+\varepsilon}(\rho^*_1-1)}(\mu+v\frac{\xi_n}{\gamma_n}\frac{\xi_n^{\frac{1}{\rho^*_2-1+\varepsilon}}}{\gamma_n^{\frac{1}{\rho^*_1-1+\varepsilon}}}) ^{\rho^*_1-1}}. \end{aligned} $

$\rho^*_1=\rho^*_2$, 由$\varepsilon$的任意性可得

$T^*\leq\frac{(\rho^*_1-1)^{\rho^*_1-1}}{(\rho^*_1)^{\rho^*_1}}\frac{1}{(\mu+v)^{\rho^*_1-1}}.$

$\rho^*_1<\rho^*_2$, 则有

$T^*\leq\frac{(\rho^*_1-1)^{\rho^*_1-1}}{(\rho^*_1)^{\rho^*_1}}\frac{1}{\mu^{\rho^*_1-1}}, $

故定理1.2得证.

定理1.3的证明 类似于定理1.2的证明: $\forall \varepsilon>0$, 存在两个正整数$N_1, N_2$, 当$n>N=\max\{N_1, N_2\}$时有

$ \begin{aligned} \log|c_n|^{-1}=\mu\log|a_n|^{-1}+v\log|b_n|^{-1} >\mu\gamma_n\gamma_n^{\frac{1}{\rho^*_1-1+\varepsilon}}+v\xi_n\xi_n^{\frac{1}{\rho^*_2-1+\varepsilon}}. \end{aligned} $

$\gamma_n=\eta\xi_n$, 有$\gamma_n=\frac{\eta}{\alpha\eta+\beta}\lambda_n$, $\xi_n=\frac{1}{\alpha\eta+\beta}\lambda_n$.于是

$\frac{1}{\lambda_n}\log|c_n|^{-1}>\lambda_n^{\frac{1}{\rho_1^*+\varepsilon-1}}[\mu(\frac{\eta}{\alpha\eta+\beta})^{\frac{\rho_1^*+\varepsilon} {\rho_1^*+\varepsilon-1}}+v(\frac{1}{\alpha\eta+\beta})^{\frac{\rho_2^*+\varepsilon} {\rho_2^*+\varepsilon-1}}\lambda_n^{\frac{1}{\rho_2^*+\varepsilon-1}-\frac{1}{\rho_1^*+\varepsilon-1}}].$

由引理2.2知$F(s)$是整函数, 不妨设$\rho^*_1<\rho^*_2$, 又由$\varepsilon$的任意性, 得

$ \begin{aligned} \rho^*&=1+\limsup\limits_{n\rightarrow\infty} \frac{\log\lambda_n}{\log(\frac{1}{\lambda_n}\log|c_n|^{-1})}\\ &\leq 1+\limsup\limits_{n\rightarrow\infty}\frac{\log\lambda_n}{\frac{1}{\rho_1^*+\varepsilon-1} \log\lambda_n+\log[\mu(\frac{\eta}{\alpha\eta+\beta})^{\frac{\rho_1^*+\varepsilon} {\rho_1^*+\varepsilon-1}}+v(\frac{1}{\alpha\eta+\beta})^{\frac{\rho_2^*+\varepsilon} {\rho_2^*+\varepsilon-1}}\lambda_n^{\frac{1}{\rho_2^*+\varepsilon-1}-\frac{1}{\rho_1^*+\varepsilon-1}}]}\\ &\leq 1+\frac{1}{\frac{1}{\rho^*_1-1}}=\rho^*_1. \end{aligned} $

所以$\rho^*\leq\min\{\rho^*_1, \rho^*_2\}.$

特别地, 当$\rho^*=\rho^*_1$, 由定理1.1可知

$ \begin{aligned} &\frac{(\rho^*_1-1)^{\rho^*_1-1}}{(\rho^*_1)^{\rho^*_1}}\frac{\lambda_n}{(\frac{1}{\lambda_n}\log|c_n|^{-1})^{\rho^*_1-1}}\\ <&\frac{(\rho^*_1-1)^{\rho^*_1-1}}{(\rho^*_1)^{\rho^*_1}}\frac{\lambda_n}{\{\lambda_n^{\frac{1}{\rho_1^*+\varepsilon-1}} [\mu(\frac{\eta}{\alpha\eta+\beta})^{\frac{\rho_1^*+\varepsilon} {\rho_1^*+\varepsilon-1}}+v(\frac{1}{\alpha\eta+\beta})^{\frac{\rho_2^*+\varepsilon} {\rho_2^*+\varepsilon-1}}\lambda_n^{\frac{1}{\rho_2^*+\varepsilon-1}-\frac{1}{\rho_1^*+\varepsilon-1}}]\}^{\rho_1^*-1}}. \end{aligned} $

$\rho^*_1=\rho^*_2$, 由$\varepsilon$的任意性可得

$T^*\leq\frac{1}{(\rho_1^*)^{\rho_1^*}}(\frac{\rho_1^*-1}{\mu(\frac{\eta}{\alpha\eta+\beta})^{\frac{\rho_1^*}{\rho_1^*-1}} +v(\frac{1}{\alpha\eta+\beta})^{\frac{\rho_1^*}{\rho_1^*-1}}} )^{\rho_1^*-1}=(\frac{\alpha\eta+\beta}{\rho_1^*})^{\rho_1^*}(\frac{\rho_1^*-1}{\mu\eta^{\rho_1^*} +v})^{\rho_1^*-1}.$

$\rho^*_1<\rho^*_2$, 则有

$T^*\leq(\frac{\alpha\eta+\beta}{\eta\rho_1^*})^{\rho_1^*}(\frac{\rho_1^*-1}{\mu})^{\rho_1^*-1}. $

故定理1.3得证.

参考文献
[1] Hardy G H, Riesz M. The general theory of Dirichlet series[M]. New York: Stechert-Hafner, Inc, 1964.
[2] 余家荣, 丁晓庆, 田范基. Dirichlet级数与随机Dirichlet级数的值分布[M]. 武汉: 武汉大学出版社, 2004.
[3] 田宏根, 孙道椿, 郑承民. 平面上的零级Dirichlet级数[J]. 系统科学与数学, 2006, 26(3): 270–276.
[4] 高宗升. Dirichlet级数表示的整函数的增长性[J]. 数学学报, 1999, 42(4): 741–748.
[5] 高宗升, 孙道椿. 无限级随机Dirichlet级数的值分布[J]. 数学年刊, 1993, 14(6): 677–685.
[6] 贺隆贞. 关于狄里克莱级数确定的整函数的(p, q)(R)型和下(p, q)(R)型[J]. 武汉大学学报(自然科学版), 1985, 4: 17–26.
[7] 贺隆贞. 关于狄里克莱级数确定的整函数的(p, q)(R)级和下(p, q)(R)型[J]. 武汉大学学报(自然科学版), 1983, 3: 73–89.
[8] Sayyed K A M, Metwally M S. Logarithmic order and logarithmic type of functions and sets of polynomials of two complex variables[J]. Bull. Fac. Fac. Sci. Qena (Egypt), 1994, 2(2): 127–140.
[9] 孔荫莹. Dirichlet-Hadamard乘积的q-级与q-型[J]. 数学学报, 2009, 52(6): 1165–1172.
[10] 孔荫莹, 邓冠铁. Dirichlet级数的Dirichlet-Hadamard乘积[J]. 数学年刊, 2014, 35(2): 145–152.
[11] 崔永琴, 汤文菊, 徐洪焱. Dirichlet级数及其新型Dirichlet-Hadamard乘积的增长性[J]. 数学的实践与认识, 2015, 45(22): 267–273.