数学杂志  2017, Vol. 37 Issue (6): 1275-1286   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
杨婕
刘丙辰
张长城
具有非局部边界的退化抛物方程组的爆破解
杨婕, 刘丙辰, 张长城    
中国石油大学(华东)理学院, 山东 青岛 266580
摘要:本文研究了具有非局部边界条件和非局部源的退化抛物方程组的弱解问题.利用基于比较原理的上下解的方法,在权函数和初始条件的假设下,获得了该方程组问题的爆破临界指标.此外,还获得了同时爆破解趋于爆破时间时的渐近行为,推广了已有的结果.
关键词退化抛物方程组    临界指标    渐近行为    非局部边界    
BLOW-UP SOLUTIONS TO DEGENERATE PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY
Yang Jie, Liu Bing-chen, Zhang Chang-cheng    
School of Science, China University of Petroleum, Qingdao 266580, China
Abstract: In this paper, we consider the weak solutions of the degenerate parabolic equations coupled via nonlocal sources, subject to nonlocal boundary conditions. By using the comparison principle, the critical blow-up exponent is obtained under the help of the weighted functions and the initial data. Moreover, asymptotic behavior near blow-up time is obtained for simultaneous blow-up solutions, which extends the known results in the previous paper.
Key words: degenerate parabolic equations     critical exponents     asymptotic behavior     nonlocal boundary    
1 引言

在这篇文章中, 考虑如下具有非局部源的退化抛物方程组问题

$ u_t = \Delta u^{m } +a u^{p_1}\|v^{m_1} \|_{\alpha}^{q_1}, \quad v_t = \Delta v^{n } + b v^{p_2}\|u^{m_2} \|_{\beta}^{q_2}, \quad(x, t)\in \Omega\times(0, T), $ (1.1)

其边界条件为

$ \begin{equation} u(x, t)=\int_{\Omega} \varphi_1(x, y)u(y, t)dy, \quad v(x, t)=\int_{\Omega} \varphi_2(x, y)v(y, t)dy, \quad (x, t)\in \partial\Omega\times(0, T), \label{1.1a} \end{equation} $ (1.2)

其初值在边界上满足相容性条件

$ \begin{equation} u(x, 0)=u_0(x), \quad v(x, 0)=v_0(x), \quad x\in\Omega, \label{1.1b} \end{equation} $ (1.3)

其中$\Omega$是有光滑边界的有界区域; $\|\cdot\|_{\alpha}$$\|\cdot\|_{\beta}$$L^{\alpha} (\Omega)$$L^{\beta} (\Omega)$范数; $m$, $n$, $\alpha$, $\beta>1$; $p_1$, $p_2\geq 0$; $a$, $b$, $q_1$, $q_2$, $m_1$, $m_2>0$; 权函数$\varphi_1(x, y)$$\varphi_2(x, y)$$\partial\Omega\times\bar\Omega$上的非负函数, 并且满足$0<\displaystyle\int_{\Omega} \varphi_1(x, y)dy$, $\displaystyle\int_{\Omega} \varphi_2(x, y)dy\le 1$; 初值$u_0, v_0\in C^{2+\nu}$, 常数$\nu\in(0, 1)$.

对于多孔介质方程解的爆破现象, 在过去的十几年中得到了很大的关注(参见文献[1-14]).多孔介质方程和系统已经成为非常重要的偏微分方程研究领域, 具有深刻的物理背景, 例如在多孔介质力学、流体力学、气体流量、种群生态领域中, 更多的细节参见文献[15-22].

Galaktionov, Kurdyumov和Samarskii在文献[23, 24]中研究了

$ u_{t}=\Delta u^{\nu+1}+v^{p}, \quad v_{t}=\Delta v^{\mu+1}+u^{q}, \quad (x, t)\in \Omega\times(0, T), \nonumber $

其具有齐次狄利克雷边界条件, 结果如下:如果$1\leq p<1+\mu$, $1\leq q<1+\nu$, 则在初值和边界条件下, 解整体存在.如果$p=1+\mu$, $q=1+\nu$, 且在狄利克雷边界条件下的最小的特征值满足$\lambda_{1}<1$, 则对任意初值$u_{0}, \:v_{0}\geq0$, $u_{0}+v_{0}$不恒等于0, 有$\displaystyle\lim_{t\rightarrow T_{0}-0}(\|u^{\nu+1}\|_{L_{2}}+\|v^{\mu+1}\|_{L_{2}})=+\infty, \;T_{0}<+\infty.$如果$p>1+\mu$$q>1+\nu$, 则存在初值$u_{0}, \:v_{0}\geq0$使上式成立.假设$p$, $q\geq1$, 令$m=pq-(1+\mu)(1+\nu)$.

(ⅰ) 若$m<0$$m=0$, 且$|\Omega|$充分小, 则对任意$u_{0}, \:v_{0}$, 解整体存在.

(ⅱ) 若$m>0$, 则存在初值的集合使解整体存在.

杜力力在文献[9]中得到了如下系统的爆破解

$ \left\{ \begin{array}{llll} u_t=\Delta u^m+u^{p_1}\displaystyle\int_{\Omega} v^{q_1}dx, \quad v_t=\Delta v^n+v^{p_2}\displaystyle\int_{\Omega} u^{q_2}dx,&(x, t)\in\Omega\times(0, T), \\ u(x, t)=v(x, t)=0,&(x, t)\in\partial\Omega\times(0, T), \\ u(x, 0)=u_0(x), \quad v(x, 0)=v_0(x),&x\in\Omega. \end{array} \right. $

他们对于以上的系统建立了爆破临界指标, 如果$m>p_{1}$, $n>p_{2}$, $q_{1}q_{2}<(m-p_{1})(n-p_{2})$, 那么任意非负解整体存在.如果$m<p_{1}$$n<p_{2}$$q_{1}q_{2}>(m-p_{1})(n-p_{2})$, 那么任意非负解对于充分大的初值在有限时刻爆破, 对于充分小的初值整体存在.如果$m>p_{1}$, $n>p_{2}$, $q_{1}q_{2}=(m-p_{1})(n-p_{2})$, 那么任意非负解对于充分小的定义域$|\Omega|$整体存在.假设$p_{1}=0$$p_{1}>m$; $p_{2}=0$$p_{2}>n$; $q_{1}>n$, $q_{2}>m$且满足$q_{2}>p_{1}-1$, $q_{1}>p_{2}-1$以及对初值的一些假设条件

$ \left. \begin{array}{llll} C_{1}(T^{*}-t)^{-\frac{q_{1}-p_{2}+1}{q_{1}q_{2}-(1-p_{1})(1-p_{2})}} \leq \displaystyle\max\limits_{x\in\bar{\Omega}}u(x, t)\leq C_{2}(T^{*}-t)^{-\frac{q_{1}-p_{2}+1}{q_{1}q_{2}-(1-p_{1})(1-p_{2})}}, \quad 0<t<T^{*}, \\ C_{3}(T^{*}-t)^{-\frac{q_{2}-p_{1}+1}{q_{1}q_{2}-(1-p_{1})(1-p_{2})}} \leq \displaystyle\max\limits_{x\in\bar{\Omega}}v(x, t)\leq C_{4}(T^{*}-t)^{-\frac{q_{2}-p_{1}+1}{q_{1}q_{2}-(1-p_{1})(1-p_{2})}}, \quad 0<t<T^{*}.\\ \end{array} \right. $

叶专和许孝精在文献[25]中考虑如下具有非局部边界条件和非局部源的多孔介质系统

$ \left\{ \begin{array}{llll} u_t = \Delta u^{m } +a u^{p}\displaystyle\int_{\Omega} v^q(y, t)dy, \quad v_t = \Delta v^{n } + b v^\alpha\displaystyle\int_{\Omega} u^\beta(y, t)dy,&(x, t)\in \Omega\times(0, T), \\ u(x, t)=\displaystyle\int_{\Omega} \varphi_1(x, y)u(y, t)dy, \quad v(x, t)=\displaystyle\int_{\Omega} \varphi_2(x, y)v(y, t)dy,& (x, t)\in \partial\Omega\times(0, T), \\ u(x, 0)=u_0(x), v(x, 0)=v_0(x), &x\in\Omega. \end{array} \right. $

主要结果如下:对于任意的$\delta>0$满足$\delta\leq\displaystyle\int_{\Omega}\varphi_1(x, y)dy\leq1$, $\delta\leq\displaystyle\int_{\Omega}\varphi_2(x, y)dy\leq1$, $x\in\Omega$, 并且假设$m>p$, $n>q$, $(m-p)(n-\alpha)>q\beta$, 那么任意一个非负的解$(u, v)$都是整体存在的.如果$\displaystyle\int_{\Omega}\varphi_1(x, y)dy\leq1$, $\displaystyle\int_{\Omega}\varphi_2(x, y)dy\leq1$, $ x\in\partial\Omega$, 并且以下条件之一成立:

(ⅰ) $m<p$;

(ⅱ) $n<\alpha$;

(ⅲ) $(m-p)(n-\alpha)<q\beta$,

那么任意非负解$(u, v)$对于充分小的初值整体存在.如果$m<p$$n<\alpha$$(m-p)(n-\alpha)<q\beta$, 那么任意非负解$(u, v)$对于充分大的初值在有限时刻爆破.对于任意的$\delta>0$满足$\delta\leq\displaystyle\int_{\Omega}\varphi_1(x, y)dy\leq1$, $\delta\leq\displaystyle\int_{\Omega}\varphi_2(x, y)dy\leq1$, $ x\in\partial\Omega$, 并且假设$m>p$, $n>q$, $(m-p)(n-\alpha)=q\beta$, 那么任意非负解$(u, v)$对于充分小的$a$$b$整体存在.在假设$m=n=1$, $q\beta>(1-\alpha)(1-p)$以及对于初值的一些假设下, 他们给出解的爆破profile.在文献[25]中没有考虑$m>p$, $n>q$, $(m-p)(n-\alpha)=q\beta$情况下的爆破现象.在本文中, 可以通过对系统(1.1)-(1.3)的研究, 得到该情况的相关结果(参见下面的定理3.1(ⅲ) 的证明).

在下节中, 将建立弱解的局部存在定理, 并给出一些辅助性引理.在第3节中, 将分别讨论十个指标, 两个权函数和两个系数对整体存在和爆破解的影响.在最后一节中, 解的渐近性质将在适当的假设条件下给出.

2 局部存在性和比较原理

对于$0<T<+\infty$, 令$\Omega_T=\Omega\times(0, T)$, $S_T=\partial\Omega\times(0, T)$.众所周知的, 退化方程不一定具有古典解, 下面给出问题(1.1)-(1.3)的弱解的定义.

定义2.1$\bar\Omega_T$上对于所有的$T>0$成立的向量函数$(u(x, t), v(x, t))$被称作系统(1.1)-(1.3)的上解(或下解), 如果以下条件成立:

(ⅰ) $u(x, t)$, $v(x, t)\in L^\infty(Q_T)$;

(ⅱ) $u(x, t)$, $v(x, t)\le(\ge)0$, $(x, t)\in S_T$; $u(x, 0)\le (\ge)u_0(x)$, $v(x, 0)\le (\ge)v_0(x)$, a.e. $x\in \Omega$;

(ⅲ) 对于任意的$t\in[0, T]$

$ \begin{eqnarray*} &&\psi_1, \psi_2 \in \Psi =\left\{\psi \in C(\bar Q_T);~ \psi_t, ~ \Delta \psi \in C(Q_T)\cap L^2(Q_T);~\psi\ge 0;~ \psi|_{S_T}=0 \right\}, \\ &&\displaystyle\int_{\Omega}\Big(u(x, t)\psi_{1}(x, t)-u_0(x)\psi_{1}(x, 0)\Big)dx\\ &\leq(\geq)&\displaystyle\int_0^T\displaystyle\int_{\Omega}\Big(u\psi_{1s}+u^m\Delta\psi_1+au^{p_1}\psi_1\Big(\displaystyle\int_{\Omega} v^{\alpha m_1}dx\Big)^{q_1/\alpha}\Big)dxds, \\ &&\displaystyle\int_{\Omega}\Big(v(x, t)\psi_2(x, t)-u_0(x)\psi_2(x, 0)\Big)dx\\ &\leq(\geq)&\displaystyle\int_0^T\displaystyle\int_{\Omega}\Big(v\psi_{2s}+v^n\Delta\psi_2+bv^{p_2}\psi_2\Big(\displaystyle\int_{\Omega} u^{\beta m_2}dx\Big)^{q_2/\beta}\Big)dxds. \end{eqnarray*} $

系统(1.1)-(1.3)的一个弱解是一个向量函数, 同时也是系统(1.1)-(1.3)的一个上解和下解.对任意的$T<\infty$, 如果$(u, v)$是系统(1.1)-(1.3)的解, 就说$(u, v)$是整体存在的.接下来, 构建整体存在定理, 因为它的证明是标准的, 在这里仅给出结果.

定理2.1 给定$u_0, v_0\in L^\infty(\Omega)$, 则对某些$T^*=T^*(u_0, v_0)>0$, 存在系统(1.1)-(1.3)的非负弱解$(u(x, t), v(x, t))$对于每一个$T<T^*$成立, 则有$T^*=\infty$或者解发生爆破.

引理2.1 (比较原理)令$(\underline u, \underline v)$$(\bar u, \bar v)$分别是系统(1.1)-(1.3)的非负下解和非负上解.如果有$(\underline{u}_{0}, \underline{v}_{0})\leq(\bar u_0, \bar v_0)$, 则在$\Omega_T$上, $(\underline{u}, \underline{v})\leq(\bar u, \bar v)$成立.

3 爆破临界指标

定理3.1 系统(1.1)-(1.3)的非负解具有以下的结果.

(ⅰ) 如果$m>p_1$, $n>p_2$, $(m-p_1)(n-p_2)>m_1q_1m_2q_2$, 那么所有的非负解都整体存在.

(ⅱ) 令$m<p_1$或者$n<p_2$或者$(m-p_1)(n-p_2)<m_1m_2q_1q_2$, 对于大初值, 解在有限时刻爆破; 对于小初值, 且$\displaystyle\int_{\Omega}\varphi_1(x, y)dy<1$$\displaystyle\int_{\Omega}\varphi_2(x, y)dy<1$, 解整体存在.

(ⅲ) 令$m>p_1$, $n>p_2$, $(m-p_1)(n-p_2)=m_1q_1m_2q_2$, 若存在小区域$\Omega$或者存在小的$a$$b$, 则解整体存在; 若存在大初值和充分大的球形域$\Omega$, 或者存在大的$a$$b$, 则解在有限时刻爆破.

  定理3.1(i).首先, 定义如下的边值问题

$ \left\{ \begin{array}{llll} -\Delta \phi(x)=\eta_1, \quad\qquad\quad\; x\in\Omega, \\ \phi(x)=\displaystyle\int_{\Omega}\varphi_1(x, y)dy, \quad x\in\partial\Omega; \end{array} \right. \nonumber \left\{ \begin{array}{llll} -\Delta \psi(x)=\eta_2, \quad\qquad\quad\; x\in\Omega, \\ \psi(x)=\displaystyle\int_{\Omega}\varphi_2(x, y)dy, \quad x\in\partial\Omega, \end{array} \right. $

其中$\eta_1$, $\eta_2$都是正常数并满足$0<\phi(x)\leq1$, $0<\psi(x)\leq1$.做如下定义

$ \begin{equation} K_1=\displaystyle\max\limits_{x\in\bar\Omega}\phi(x), \quad K_2=\displaystyle\min\limits_{x\in\bar\Omega}\phi(x); \quad L_1=\displaystyle\max\limits_{x\in\bar\Omega}\psi(x), \quad L_2=\displaystyle\min\limits_{x\in\bar\Omega}\psi(x)\mbox{.}\nonumber \end{equation} $

定义$\bar u=(K\phi(x))^{l_1}$, $\bar v=(K\psi(x))^{l_2}\mbox{.}$$m>p_1$, $n>p_2$, $(m-p_1)(n-p_2)>m_1q_1m_2q_2$, 由文献[15], 可以得到存在两个正常数$l_1, l_2\in(0, 1)$满足$p_1l_1+m_1q_1l_2<ml_1$, $m_2q_2l_1+p_2l_2<nl_2$, $ml_1, nl_2<1$.易见, $(\bar u, \bar v)$是有下界的函数, 即$\bar u\geq (KK_2)^{l_1}$, $\bar v\geq(KL_2)^{l_{2}}$, $ t>0$.经过计算,

$ \begin{eqnarray*} \bar u_t-\Delta \bar u^m&\geq&\eta_1ml_1K^{ml_1}K_1^{ml_1-1}, \nonumber\\ a\bar u^{p_1}\|\bar v^{m_1}\|_\alpha^{q_1}&=&a(K\phi(x))^{p_1l_1}\Big[\displaystyle\int_{\Omega}(K\psi(x))^{m_1l_2\alpha}dx \Big]^{q_1/\alpha}\\ &\leq& aK^{p_1l_1+m_1l_2q_1}K^{p_1l_1}_1 L_1^{m_1l_2q_1}|\Omega|^{q_1/\alpha}, \end{eqnarray*} $

其中在第一个不等式中利用了$ml_1<1$.类似的, 可以得到

$ \bar v_t-\Delta\bar v^n \geq\eta_2nl_2K^{nl_2}L^{nl_2-1}_1, b\bar v^{p_2}\|\bar u^{m_2}\|^{q_2}_\beta \leq bK^{p_2l_2+m_2l_1q_2}K^{m_2l_1q_2}_1L^{p_2l_2}_1|\Omega|^{q_2/\beta}. $

定义

$ \begin{eqnarray*}&&\bar K_1=\Big[\frac{a|\Omega|^{q_1/\alpha}K_1^{p_1l_1-ml_1+1}L_1^{m_1l_2q_1}}{\eta_1ml_1} \Big]^{\frac{1}{ml_1-p_1l_1-m_1l_2q_1}}, \\ &&\bar K_2=\Big[\frac{b|\Omega|^{q_2/\beta}K_1^{m_2l_1q_2}L_1^{p_2l_2-nl_2+1}}{\eta_2nl_2} \Big]^{\frac{1}{nl_2-p_2l_2-m_2l_1q_2}}.\end{eqnarray*} $

此外, 令$K=\max\Big\{\bar K_1, \bar K_2 \Big\}$.选择$K$足够大, 可以得到$\bar u(x, 0)\geq u_0(x)$, $\bar v(x, 0)\geq v_0(x)$.对于每一个$x\in\partial\Omega$,

$ \bar u(x, t)=(K\phi(x))^{l_1}\geq K^{l_1}\displaystyle\int_{\Omega}\varphi_1(x, y)dy\geq \displaystyle\int_{\Omega}\varphi_1(x, y)\bar u(y, t)dy. $

类似的, 可以得到$\bar v(x, t)=(K\psi(x))^{l_2}\geq\displaystyle\int_{\Omega}\varphi_2(x, y)\bar v(y, t)dy, $其中用到了$l_1, l_2\in(0, 1)$, $\phi(x), \psi(x)\in(0, 1)$.根据比较原理, 可以得到$(u, v)\leq (\bar u, \bar v)$.因此, 解$(u, v)$是整体存在的.定理3.1(ⅰ) 得证.

  定理3.1(ⅱ) .考虑下面的系统

$ \begin{equation} \left\{ \begin{array}{llll} u_t = \Delta u^{m } +a u^{p_1}\|v^{m_1}\|_\alpha^{q_1}, \quad v_t = \Delta v^{n } +b v^{p_2}\|u^{m_2}\|_\beta^{q_2}, \quad &(x, t)\in\Omega\times(0, T), \\ u(x, t)=0, \quad v(x, t)=0, \quad&x\in\partial\Omega, t>0, \\ u(x, 0)=u_0(x), \quad v(x, 0)=v_0(x), \quad&x\in\Omega. \end{array} \right. \nonumber \end{equation} $

将在一个有上界的区域$\Omega$中构造一个上解, 在此区域中$u, v>0$.利用参考文献[12]中的方法并将它应用到退化方程中去.只需考虑下面的问题

$ \left\{ \begin{array}{llll} u_t = \Delta u^{m } +a u^{p_1}\|v_+^{m_1}\|_\alpha^{q_1}, \quad v_t = \Delta v^{n } +b v^{p_2}\|u_+^{m_2}\|_\beta^{q_2}, \quad &(x, t)\in\Omega\times(0, T), \\ u(x, t)=0, \quad v(x, t)=0, \quad&x\in\partial\Omega, t>0, \\ u(x, 0)=u_0(x), \quad v(x, 0)=v_0(x), \quad &x\in\Omega, \end{array} \right. $

其中$w_+=\max\{0, w\}$.令$\psi(x)$是一个非平凡非负的连续函数并且在边界$\partial\Omega$上为零.不失一般性, 假设$0\in\Omega$, 并且$\psi(0)>0$.将构造一个爆破的上解来完成证明.令

$ \underline u(x, t)=\frac{1}{(T-t)^{l_1}}w^{1/m}\left(\frac{|x|}{(T-t)^{\delta}}\right), \quad \underline v(x, t)=\frac{1}{(T-t)^{l_2}}w^{1/n}\left(\frac{|x|}{(T-t)^{\delta}}\right), $

$w(r)=\frac{R^3}{12}-\frac{R}{4}r^2+\frac{1}{6}r^3$, $r=\frac{|x|}{(T-t)^\delta}, \quad 0\leq r \leq R$, 其中$l_1, l_2, \delta>0$$0<T<1$将在后面被定义.显然, $0\leq w(r)\leq \frac{R^3}{12}$并且由$w'(r)=\frac{r(r-R)}{2}$可知$w(r)$是非增的.注意到

$ \begin{equation} {\rm supp} \underline u(\cdot, t)={\rm supp} \underline v(\cdot, t)\subset\overline{B(0, R(T-t)^\delta)}\subset\Omega.\nonumber \end{equation} $

经过直接的计算得

$ \begin{eqnarray*} \underline u_t(x, t)-\Delta\underline u^m(x, t)&=&\frac{ml_1w^{1/m}(r)+\delta rw'(r)w^{\frac{1-m}{m}}}{m(T-t)^{l_1+1}}+\frac{R-2r}{2(T-t)^{ml_1+2\delta}}+\frac{(N-1)(R-r)}{2(T-t)^{ml_1+\delta}}\\ &\leq& \frac{l_1(R^3/12)^{\frac{1}{m}}}{(T-t)^{l_1+1}}+\frac{NR-(N+1)r}{2(T-t)^{ml_1+2\delta}}, \\ \underline v_t(x, t)-\Delta\underline v^n(x, t)&\leq& \frac{l_2(R^3/12)^{\frac{1}{n}}}{(T-t)^{l_2+1}}+\frac{NR-(N+1)r}{2(T-t)^{nl_2+2\delta}}. \label{3.4} \end{eqnarray*} $

注意到$T<1$充分小.

情形(1) 如果$0\leq r\leq NR/(N+1)$, 有$w(r)\geq R^3(3N+1)/(12(N+1)^3)$, 那么

$ \begin{eqnarray*} a\underline u^{p_1}\|\underline v^{m_1}_{+}\|_\alpha^{q_1}&\geq& \frac{a}{(T-t)^{p_1l_1+m_1l_2q_1}}\Big[\frac{(3N+1)R^3}{12(N+1)^3}\Big]^{p_1/m}\Big[\displaystyle\int_{B(0, R(T-t)^\delta)}w^{\frac{m_1\alpha}{n}}_+(|\xi|)d\xi\Big]^{\frac{q_1}{\alpha}}\\ &=&a\frac{M_1}{(T-t)^{p_1l_1+m_1l_2q_1}}\Big[ \frac{R^3(3N+1)}{12(N+1)^3}\Big]^{\frac{p_1}{m}}, \\ b\underline v^{p_2}\|\underline u^{m_2}_{+}\|_\beta^{q_2}&\geq& b\frac{M_2}{(T-t)^{p_2l_2+m_2l_1q_2}}\Big[ \frac{(3N+1)R^3}{12(N+1)^3}\Big]^{\frac{p_2}{n}}, \end{eqnarray*} $

其中$M_1=\Big[\displaystyle\int_{B(0, R(T-t)^\delta)}w^{\frac{m_1\alpha}{n}}_+(|\xi|)d\xi\Big]^{\frac{q_1}{\alpha}}$, $M_2=\Big[\displaystyle\int_{B(0, R(T-t)^\delta)}w^{\frac{m_2\beta}{m}}_+(|\xi|)d\xi\Big]^{\frac{q_2}{\beta}}$.因此有

$ \begin{equation} \left. \begin{array}{llll} \underline u_t(x, t)-\Delta\underline u^m(x, t)-a\underline u^{p_1}\|\underline v^{m_1}_+\|_\alpha^{q_1} \leq& \frac{l_1(R^3/12)^{\frac{1}{m}}}{(T-t)^{l_1+1}}-a\frac{M_1}{(T-t)^{p_1l_1+m_1l_2q_1}}\Big[\frac{R^3(3N+1)}{12(N+1)^3}\Big]^{\frac{p_1}{m}}\\ &+\frac{NR-(N+1)r}{2(T-t)^{ml_1+2\delta}}, \\ \underline v_t(x, t)-\Delta\underline v^n(x, t)-b\underline v^{p_2}\|\underline u^{m_2}_+\|_\beta^{q_2}\leq& \frac{l_2(R^3/12)^{1/n}}{(T-t)^{l_2+1}}- b\frac{M_2}{(T-t)^{p_2l_2+m_2l_1q_2}}\Big[\frac{(3N+1)R^3}{12(N+1)^3}\Big]^{\frac{p_2}{n}}\\ &+\frac{NR-(N+1)r}{2(T-t)^{nl_2+2\delta}}. \end{array} \right.\nonumber \end{equation} $

情形(2) 如果$NR/(N+1)<r\leq R$, 那么

$ \begin{equation} \left\{ \begin{array}{llll} \underline u_t(x, t)-\Delta\underline u^m(x, t)-a\underline u^{p_1}\|\underline v^{m_1}_+\|_\alpha^{q_1}\leq \frac{l_1(R^3/12)^{\frac{1}{m}}}{(T-t)^{l_1+1}}-a\frac{M_1}{(T-t)^{p_1l_1+m_1l_2q_1}}\Big[\frac{R^3(3N+1)}{12(N+1)^3}\Big]^{\frac{p_1}{m}}, \\ \underline v_t(x, t)-\Delta \underline v^n(x, t)-b\underline v^{p_2}\|\underline u^{m_2}_+\|_\beta^{q_2}\leq\frac{l_2(R^3/12)^{\frac{1}{n}}}{(T-t)^{l_2+1}}- b\frac{M_2}{(T-t)^{p_2l_2+m_2l_1q_2}}\Big[\frac{(3N+1)R^3}{12(N+1)^3}\Big]^{\frac{p_2}{n}}. \end{array} \right. \nonumber \end{equation} $

参照参考文献[15]中的引理2.2, 存在两个正常数$l_1$, $l_2$满足

$ p_1l_1+m_1q_1l_2>ml_1+1, \quad m_2q_2l_1+p_2l_2>nl_2+1, \quad (m-1)l_1>1, \quad (n-1)l_2>1. $

选择一个充分小的正常数$\delta$使得

$ \delta<\min\left\{\frac{p_1l_1+m_1q_1l_2-ml_1}{N+2}, \frac{p_2l_2+m_2q_2l_1-nl_2}{N+2}, \frac{p_1l_1+m_1q_1l_2-l_1-1}{N}, \frac{p_2l_2+m_2q_2l_1-l_2-1}{N}\right\}, $

并且$\delta<\min\{\frac{ml_1-l_1-1}{2}, \frac{nl_2-l_2-1}{2}\}$.因此$p_1l_1+m_1q_1l_2-N\delta>ml_1+2\delta>l_1+1$, $p_2l_2+m_2q_2l_1-N\delta>nl_2+2\delta>l_2+1$.因此对于充分小的$T>0$,

$ \underline u_t(x, t)-\Delta\underline u^m(x, t)-a\underline u^{p_1}\|\underline v^{m_1}_+\|_\alpha^{q_1}\leq 0, \quad \underline v_t(x, t)-\Delta \underline v^n(x, t)-b\underline v^{p_2}\|\underline u^{m_2}_+\|_\beta^{q_2}\leq 0. $

由于$\varphi(0)>0$并且$\varphi(x)$连续, 存在两个正常数$\rho$$\epsilon$使得$\varphi(x)\geq\epsilon$对所有的$x\in B(0, \rho)\subset\Omega$成立.选择$T$足够小来保证$B(0, RT^\delta)\subset B(0, \rho)$, 因此$\underline u\leq0$, $\underline v\leq0$$S_T$上成立.对于足够大的$\bar M$$\underline u(x, 0)\leq\bar M\varphi(x)$, $\underline v(x, 0)\leq\bar M\varphi(x)$成立.根据比较原理, 如果有$u_0\geq\bar M\varphi(x)$, $v_0\geq\bar M\varphi(x)$, 得到$(\underline u, \underline v)\leq(u, v)$.即$(u, v)$在有限时刻爆破.根据比较原理, 由于$\underline u(x, t)=\displaystyle\int_{\Omega}\varphi_1(x, y)u(y, t)dy>0$, $\underline v(x, t)=\displaystyle\int_{\Omega}\varphi_2(x, y)v(y, t)dy>0$, 系统(1.1)-(1.3)的任意非负解$(u, v)$一定在有限的时刻爆破.

第一步 证明$m<p_1$的情况.首先, 利用参考文献[26]中提供的方法, 并且令

$ \max\Big\{ \displaystyle\max\limits_{x\in\partial\Omega}\displaystyle\int_{\Omega}\varphi_1(x, y)dy, \ \displaystyle\max\limits_{x\in\partial\Omega}\displaystyle\int_{\Omega}\varphi_2(x, y)dy \Big\}=\delta_0\in(0, 1). $

$w(x)$是下面椭圆边值问题的解: $-\Delta w(x)=1$, $x\in\Omega$; $w(x)=C_0$, $x\in\partial\Omega$.存在正常数$M>0$$C_0$无关且使得$C_0\leq w(x)\leq C_0+M$成立, 取$C_0$充分大使得$\frac{1+C_0}{1+C_0+M}\geq\delta_0$.令$\bar u(x, t)=[\bar a(1+w(x))]^{K_1}$, $\bar v(x, t)=[\bar b(1+w(x))]^{K_2}$, 其中$K_1$, $K_2$将在后边被定义.经计算

$ \begin{equation} \left. \begin{array}{llll} \bar u_t-\Delta\bar u^m-a\bar u^{p_1}\|\bar v^{m_1}\|_\alpha^{q_1}\geq& mK_1\bar a^{mK_1}(1+C_0+M)^{mK_1-1}\\ &-a\bar a^{p_1K_1}\bar b^{m_1K_2q_1}(1+C_0+M)^{p_1K_1+m_1K_2q_1}|\Omega|^{q_1/\alpha}, \end{array} \right. \end{equation} $ (3.1)

选择$0<K_1<1$满足$mK_1\leq1$.类似的, 可以得到

$ \begin{equation} \left. \begin{array}{llll} \bar v_t-\Delta\bar v^n-b\bar v^{p_2}\|\bar u^{m_2}\|_\beta^{q_2}\geq& nK_2\bar b^{nK_2}(1+C_0+M)^{nK_2-1}\\ &-b\bar a^{m_2K_1q_2}\bar b^{K_2p_2}(1+C_0+M)^{K_2p_2+m_2K_1q_2}|\Omega|^{q_2/\beta}. \end{array} \right. \end{equation} $ (3.2)

由于$m<p_1$, 对于固定的$C_0$, $M$, $\bar b$, 如果$\bar a$充分小, 可以得到不等式$\bar u_t-\Delta\bar u^m\geq a\bar u^{p_1} \|\bar v^{m_1}\|_\alpha^{q_1}$, $\bar v_t-\Delta\bar v^n\geq b\bar v^{p_2}\|\bar u^{m_2}\|_\beta^{q_2}$.下面来计算边界条件:由$K_1, \delta_0\in(0, 1)$, 可得$\delta_{0}^{K_1}>\delta_0$, 并且

$ \begin{array}{llll} \bar u(x, t)&=\Big[\bar a(1+w(x))\Big]^{K_1}\geq\Big[\bar a(1+C_0)\Big]^{K_1} \geq\displaystyle\int_{\Omega}\varphi_1(x, y)\bar u(y, t)dy, \quad x\in\partial\Omega, \ t>0. \end{array} $

类似的, 得到$\bar v(x, t)\geq\displaystyle\int_{\Omega}\varphi_2(x, y)\bar v(y, t)dy$, $x\in\Omega$, 利用比较原理, 得到$(u, v)\leq (\bar u, \bar v)$, 则$(u, v)$整体存在.

第二步 $n<p_2$情况下的证明可由第一步直接平推而来, 不再赘述.

第三步 对于$(m-p_1)(n-p_2)<m_1m_2q_1q_2$的情况, 分为以下三部分进行讨论.

a) 如果$m=p_1$, 返回到(3.1)和(3.2)式, 选取充分小的$\bar a$, $\bar b$, 并且$\bar b$$\bar a$不相关, 利用第一步的论点与论据得到结论.

b) 如果$n=p_2$, 情况与上面类似, 证明省略.

c) 如果$m>p_1$, $n>p_2$, $0<n-p_2<\frac{m_1q_1m_2q_2}{m-p_1}$, 可以得到下面的不等式

$ \begin{eqnarray*}&&mK_1\bar a^{mK_1-p_1K_1}\geq a\bar b^{m_1K_2q_1}(1+C_0+M)^{p_1K_1+m_1K_2q_1-mK_1+1}|\Omega|^{q_1/\alpha}, \\ &&nK_2\bar b^{nK_2-K_2p_2}\geq b \bar a^{m_2K_1q_2}(1+C_0+M)^{K_2p_2+m_2K_1q_2-nK_2+1}|\Omega|^{q_2/\beta}. \end{eqnarray*} $

由上面的两个等式可知对于充分小的$\bar b$下面的等式是正确的

$ \begin{eqnarray*} &&\bar b^{n-p_2-\frac{q_1q_2m_1m_2}{m-p_1}}\geq D_1^{\frac{1}{K_2}}(1+C_0+M)^{\frac{D_2}{K_2}}, \\ && D_1=\left[\frac{ba^{\frac{m_2q_2}{m-p_1}}|\Omega|^{\frac{q_2}{\beta}+\frac{m_2q_1q_2}{(m-p_1)\alpha}}}{nK_2(mK_1)^{\frac{m_2q_2}{m-p_1}}}\right]^{\frac{1}{K_2}}, \\ &&D_2=\left[\frac{K_2[m_1m_2q_1q_2-(n-p_2)(m-p_1)]+m_2q_2+m-p_1}{m-p_1}\right]^{\frac{1}{K_2}}. \end{eqnarray*} $

因此证明了$u_0(x)\leq[\bar a(1+w(x))]^{K_1}$, $v_0(x)\leq[\bar b(1+w(x))]^{K_2}$, $x\in\Omega$, 系统(1.1)-(1.3)的任意非负解$(u, v)$是整体存在的.从而, 定理3.1(ⅱ) 得证.

  定理3.1(ⅲ) .如果$m>p_1$, $n>p_2$, $(m-p_1)(n-p_2)=m_1q_1m_2q_2$, 那么存在两个正数$l_1, l_2<1$满足$\frac{m_1q_1}{m-p_1}=\frac{l_1}{l_2}=\frac{n-p_2}{m_2q_2}$, $ml_1, nl_2<1$.定义$\bar u(x, t)$, $\bar v(x, t)$: $\bar u=(K\phi(x))^{l_1}$, $\bar v=(K\psi(x))^{l_2}, $其中的$K$将在后面被定义.用跟定理3.1(i)中相同的创建估计的方式, 可得

$ \left. \begin{array}{llll} &\bar u_t-\Delta \bar u^m-a\bar u^{p_1}\|\bar v^{m_1}\|_\alpha^{q_1}\geq \eta_1ml_1K^{ml_1}{K_1}^{ml_1-1}-aK^{p_1l_1+m_1l_2q_1}K_1^{p_1l_1}L_1^{m_1l_2q_1}|\Omega|^{\frac{q_1}{\alpha}}, \\ &\bar v_t-\Delta\bar v^n-b\bar v^{p_2}\|\bar u^{m_2}\|_\beta^{q_2}\geq \eta_2nl_2K^{nl_2}L_1^{nl_2-1}-bK^{p_2l_2+m_2l_1q_2}K_1^{m_2l_1q_2}L_1^{p_2l_2}|\Omega|^{\frac{q_2}{\beta}}. \end{array} \right. $

令上述不等式的右端为正, 即$a\leq \frac{\eta_1ml_1K_1^{ml_1-p_1l_1-1}}{L_1^{m_1l_2q_1}|\Omega|^{q_1/\alpha}}$, $b\leq \frac{\eta_2nl_2L_1^{nl_2-p_2l_2-1}}{K_1^{m_2l_1q_2}|\Omega|^{q_2/\beta}}$.取$K$充分大, 通过类比使用定理3.1(i)中的参数, 可以解决边值问题.根据比较原理可得系统(1.1)-(1.3)的任意非负解整体存在.在这一部分, 考虑$m>p_1$, $n>p_2$, $(m-p_1)(n-p_2)=m_1q_1m_2q_2$的情况.易见存在两个正常数$l_{1}$, $l_{2}$使得$ml_1=p_1l_1+m_1q_1l_2$, $nl_2=p_2l_2+m_2q_2l_1$, $(m-1)l_1>1$, $(n-1)l_2>1$.用$\lambda_{B_{R}}>0$$\phi_{R}(r)$分别表示以下特征问题的第一个特征值以及相应特征函数

$ \begin{equation} -\phi''(r)-\frac{N-1}{r}\phi'(r)=\lambda\phi(r), \quad r\in(0, R); \quad \phi'(0)=0, \quad\phi(R)=0.\nonumber \end{equation} $

易见, $\phi_{R}(r)$可以在$B$中标准化得到$\phi_{R}(r)>0$, 并且有$\phi_{R}(0)=\displaystyle\max_{x\in B}\phi_{R}(r)=1$.由特征值和特征方程的性质(令$\tau=\frac{r}{R}$), 知道$\lambda_{B_{R}}=R^{-2}\lambda_{B_{1}}$$\phi_{R}(r)=\phi_{1}(\frac{r}{R})=\phi_{1}(\tau)$成立, 其中$\lambda_{B_{1}}$$\phi_{1}$是单位球$B_{1}(0)$内的第一个特征值和相应的标准化特征函数.此外, $\displaystyle\max_{B_{1}}\phi_{1}(\tau)=\phi_{1}(0)=\phi_{R}(0)=\displaystyle\max_{B}\phi_{R}(r)=1$.定义函数$\underline{u}(x, t)$, $\underline{v}(x, t)$为如下形式$\underline{u}(x, t)=\frac{1}{(T-t)^{l_{1}}}\phi_{R}^{l_{1}}(|x|)$, $\underline{v}(x, t)=\frac{1}{(T-t)^{l_{2}}}\phi_{R}^{l_{2}}(|x|)$.下面, 将会证明$(\underline{u}, \underline{v})$在球$B=B(0, R)$中在有限的时间内爆破.因此$(\underline{u}, \underline{v})$在更大的区域$\Omega$中爆破.经过直接的计算,

$ \begin{equation} \left\{ \begin{array}{llll} \underline{u}_{t}-\Delta\underline{u}^{m}-a\underline{u}^{p_{1}}\|\underline{v}^{m_{1}}\|_{\alpha}^{q_{1}}\leq \frac{\phi_{R}^{l_{1}}}{(T-t)^{l_{1}+1}}[l_{1}-\frac{a}{(T-t)^{ml_{1}-l_{1}+1}}(\phi_{R}^{l_{1}p_{1}}\|\phi_{R}^{m_{1}l_{2}}\|_{\alpha}^{q_{1}}-\frac{1}{a}ml_{1}\lambda_{B_{R}})], \\ \underline{v}_{t}-\Delta\underline{v}^{n}-b\underline{v}^{p_{2}}\|\underline{u}^{m_{2}}\|_{\beta}^{q_{2}}\leq \frac{\phi_{R}^{l_{2}}}{(T-t)^{l_{2}+1}}[l_{2}-\frac{b}{(T-t)^{nl_{2}-l_{2}+1}}(\phi_{R}^{l_{2}p_{2}}\|\phi_{R}^{m_{2}l_{1}}\|_{\beta}^{q_{2}}-\frac{1}{b}nl_{2}\lambda_{B_{R}})], \end{array} \right. \nonumber \end{equation} $

其中$\phi_{R}^{l_{1}p_{1}}\|\phi_{R}^{m_{1}l_{2}}\|_{\alpha}^{q_{1}}\leq K_{1}R^{\frac{Nq_{1}}{\alpha}}$, $\phi_{R}^{l_{2}p_{2}}\|\phi_{R}^{m_{2}l_{1}}\|_{\beta}^{q_{2}}\leq K_{2}R^{\frac{Nq_{2}}{\beta}}$, 并且$K_{1}, K_{2}$$R$无关.因此, 考虑到$\lambda_{B_{R}}=R^{-2}\lambda_{B_{1}}$, 假设$R$充分大, 使得$\lambda_{B_{R}}<\frac{a\phi_{R}^{l_{1}p_{1}}\|\phi_{R}^{m_{1}l_{2}}\|_{\alpha}^{q_{1}}}{ml_{1}}$, $ \lambda_{B_{R}}<\frac{b\phi_{R}^{l_{2}p_{2}}\|\phi_{R}^{m_{2}l_{1}}\|_{\beta}^{q_{2}}}{nl_{2}}$, 所以, 对于小的$T>0$或者大的$a$$b$, $\underline{u}_{t}-\Delta\underline{u}^{m}-a\underline{u}^{p_{1}}\|\underline{v}^{m_{1}}\|_{\alpha}^{q_{1}}\leq 0, ~ \underline{v}_{t}-\Delta\underline{v}^{n}-b\underline{v}^{p_{2}}\|\underline{u}^{m_{2}}\|_{\beta}^{q_{2}}\leq 0.\nonumber$因此$(\underline{u}, \underline{v})$是球$B$中的正的下解, 对于充分大的初值在有限时间内爆破, 即在球$B$内有$\underline{u}(x, 0)=T^{-l_{1}}\phi_{R}^{l_{1}}(|x|)\leq u_{0}(x)$, $\underline{v}(x, 0)=T^{-l_{2}}\phi_{R}^{l_{2}}(|x|)\leq v_{0}(x)$.根据比较原理, 系统(1.1)的任意非负解在有限时间内爆破.

4 渐近性质

这一部分, 讨论系统(1.1)-(1.3)在适当假设条件下的渐近性质.假设$m=n=1$, $p_1<1$, $p_2<1$, $m_1q_1m_2q_2>(1-p_2)(1-p_1)$, 并且有$\displaystyle\int_{\Omega} \varphi_1(x, y)dy\leq c<1$$\displaystyle\int_{\Omega} \varphi_2(x, y)dy\leq c<1$成立.当$m=n=1$时, 系统(1.1)-(1.3)变为

$ \begin{equation} \left\{ \begin{array}{llll} u_t = \Delta u +a u^{p_1}\|v^{m_1} \|_{\alpha}^{q_1}, \quad v_t = \Delta v + b v^{p_2}\|u^{m_2} \|_{\beta}^{q_2}, \quad&(x, t)\in \Omega\times(0, T), \\ u(x, t)=\displaystyle\int_{\Omega} \varphi_1(x, y)u(y, t)dy, \quad v(x, t)=\displaystyle\int_{\Omega} \varphi_2(x, y)v(y, t)dy, \quad&(x, t)\in \partial\Omega\times(0, T), \\ u(x, 0)=u_0(x), v(x, 0)=v_0(x), \quad &x\in\Omega. \end{array} \right. \end{equation} $ (4.1)

假设系统的解$(u, v)$在有限时间$T$时爆破.为了方便起见, 定义

$ g_1(t)=a\|v^{m_1}\|_\alpha^{q_1}, G_1(t)=\displaystyle\int_0^tg_1(s)ds; g_2(t)=b\|u^{m_2}\|_\beta^{q_2}, G_2(t)=\displaystyle\int_0^tg_2(s)ds. $

首先证明在假设条件下解在有限时间内爆破.如果$p_1<1$, $p_2<1$, $m_1q_1m_2q_2>(1-p_2)$ $(1-p_1)$, 那么存在两个正常数$\alpha_2, \beta_2>1$使得

$ \frac{m_1q_1+1-p_2}{m_2q_2+1-p_1}=\frac{\alpha_2}{\beta_2} $

成立.因此$\frac{1-p_1}{m_1q_1}<\frac{\beta_2}{\alpha_2}$, $\frac{1-p_2}{m_2q_2}<\frac{\alpha_2}{\beta_2}$.令$\gamma=\min\{m_1q_1\beta_2+\alpha_2p_1-\alpha_2+1, \ m_2q_2\alpha_2+\beta_2p_2-\beta_2+1\}$, 那么$\gamma>1$.令$s(t)$是如下柯西问题的唯一解:

$ \left\{ \begin{array}{llll} s'(t)=-\lambda s(t)+\min\Big\{ {\frac{a}{\alpha_2}}\left(\displaystyle\int_{\Omega}\varphi_1^{m_1\alpha\beta_2}(x)dx\right)^{\frac{q_1}{\alpha}}, {\frac{b}{\beta_2}}\left(\displaystyle\int_{\Omega}\varphi_1^{m_2\beta\alpha_2}(x)dx\right)^{\frac{q_2}{\beta}}\Big\}s^{\gamma}(t), \\ s(0)=s_0>0. \end{array} \right. $

如果$s_0$足够大的话, $s(t)$在有限时间$T(s_0)$爆破.令$\underline u(x, t)=s^{\alpha_2}(t)\varphi_1^{\alpha_2}(x)$, $\underline v(x, t)=s^{\beta_2}(t)\varphi_1^{\beta_2}(x)$, 其中$\lambda$是如下特征问题的第一特征值$-\Delta\varphi_1(x)=\lambda\varphi_1(x), \ x\in\Omega;~ \varphi_1(x)=0, \ x\in\partial\Omega, $并且$\varphi_1(x)$是相应的特征方程, 有$\displaystyle\int_{\Omega}\varphi_1(x)dx=1$.经过计算

$ \begin{eqnarray*} \Delta \underline u+a\underline{u}^{p_1}\|\underline{v}^{m_1}\|_\alpha^{q_1}&=&s^{\alpha_2}(t)(-\lambda\alpha_2\varphi_1^{\alpha_2}(x))+ as^{p_1\alpha_2+m_1\beta_2q_1}(t)\varphi_1^{p_{1}\alpha_2}(x)\left[\displaystyle\int_{\Omega}\varphi_1^{m_1\alpha\beta_2}(x)dx\right]^{\frac{q_1}{\alpha}}\\ &\geq& \alpha_2s^{\alpha_2-1}(t)\varphi_1^{\alpha_2}(x)s'(t)=\underline u_t.\end{eqnarray*} $

类似的, $\Delta\underline v+bv^{p_2}\|u^{m_2}\|_\beta^{q_2}\geq \underline v_t$.显然, 对所有的$x\in\partial\Omega$, $t\in(0, T(s_0))$,

$ \underline u(x, t)=0\leq \displaystyle\int_{\Omega} \varphi_1(x, y)\underline u(y, t)dy, ~~\underline v(x, t)=0\leq \displaystyle\int_{\Omega} \varphi_2(x, y)\underline v(y, t)dy. $

因此$(\underline u, \underline v)\leq (u, v)$可以由

$ \underline u(x, 0)=s^{\alpha_2}(0)\varphi_1^{\alpha_2}(x)<u_0(x), ~~\underline v(x, 0)=s^{\beta_2}(0)\varphi_1^{\beta_2}(x)<v_0(x) $

得到, 所以$(u, v)$在有限时间内爆破.参照参考文献[25], 得到下面的引理.

引理4.1 假设系统(4.1)的解在$T$时爆破, 则

$ \displaystyle\lim\limits_{t\rightarrow T}g_1(t)=\displaystyle\lim\limits_{t\rightarrow T}G_1(t)=+\infty, \quad \displaystyle\lim\limits_{t\rightarrow T}g_2(t)=\displaystyle\lim\limits_{t\rightarrow T}G_2(t)=+\infty. $

引理4.2 在引理4.1的条件下, 下面的极限成立

$ \lim\limits_{t\rightarrow T}\frac{\displaystyle\int_0^tG_1(s)ds}{G_1(t)}=0, \quad \lim\limits_{t\rightarrow T}\frac{\displaystyle\int_0^tG_2(s)ds}{G_2(t)}=0. $

引理4.3 假设对任意的$ x\in\bar\Omega$$\Delta u_0, \Delta v_0\leq 0$, 对$(x, y)\in\partial\Omega\times\Omega$, 有$\varphi_1(x, y)\geq 0$, $\varphi_2(x, y)\geq 0$, 并且

$ \displaystyle\int_{\Omega} \varphi_1(x, y)dy\leq c<1, ~~ \displaystyle\int_{\Omega} \varphi_2(x, y)dy\leq c<1. $

那么$\Delta u\leq0$, $\Delta v\leq0$在区域$\Omega$中有一个任意的紧支集.

  易见该引理是参考文献[1]中引理5.1经过小的修改后的直接结果.

引理4.4 在引理4.1-4.3的条件下, 对区域$\Omega$中的任意紧支集, 有

$ \displaystyle\lim\limits_{t\rightarrow T}\frac{u^{1-p_1}(x, t)}{(1-p_1)G_1(t)}=\lim\limits_{t\rightarrow T}\frac{\|u(\cdot, t)\|_\infty^{1-p_1}}{(1-p_1)G_1(t)}=1, \ \displaystyle\lim\limits_{t\rightarrow T}\frac{v^{1-p_2}(x, t)}{(1-p_2)G_2(t)}=\lim\limits_{t\rightarrow T}\frac{\|v(\cdot, t)\|_\infty^{1-p_2}}{(1-p_2)G_2(t)}=1. $

  证明与参考文献[25]类似.

定义4.1 如果$\lim\limits_{t\rightarrow T}\frac{f(t)}{g(t)}=1$, 接下来定义$f(t)\sim g(t)$.显而易见的, 等价关系具有以下的性质:

1) 如果$f(t)\sim g(t)$, $\forall k\in R$, 有$f^k(t)\sim g^k(t)$;

2) 如果$f(t)\sim g(t)$, $g(t)\sim h(t)$, 有$f(t)\sim h(t)$;

3) 如果$f(t)\sim g(t)$, $\varphi(t)\sim\psi(t)$; 有$f(t)\varphi(t)\sim g(t)\psi(t)$.

4) 如果$f(t)\sim g(t)$, 有$\displaystyle\int_0^tf(s)ds\sim \displaystyle\int_0^tg(s)ds$.

定理4.1 在引理4.4以及$m_1q_1m_2q_2>(1-p_1)(1-p_2)$的条件下, 有

$ \begin{eqnarray} &&\lim\limits_{t\rightarrow T}(T-t)^{\frac{m_1q_1+1-p_2}{m_1m_2q_1q_2-(1-p_1)(1-p_2)}}u(x, t)\nonumber\\&=&\Big\{ a|\Omega|^{\frac{q_1}{\alpha}}(1-p_2)^{\frac{m_1q_1}{1-p_2}}\frac{m_1m_2q_1q_2-(1-p_1)(1-p_2)}{(1-p_1)(m_1q_1+1-p_2)}\Big\} ^{\frac{m_1q_1+1-p_2}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}\nonumber\\ &&\cdot\Big\{ |\Omega|^{\frac{q_1}{\alpha}-\frac{q_2}{\beta}}\frac{am_2q_2(m_1q_1+1-p_2)(1-p_2)^{\frac{m_1q_1}{1-p_2}}}{bm_1q_1(m_2q_2+1-p_1)(1-p_1) ^{\frac{m_2q_2}{1-p_1}}}\Big\}^{-\frac{m_1q_1}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}\nonumber\\ &&\cdot(1-p_1)^{\frac{1}{1-p_1}}, \nonumber\\ &&\lim\limits_{t\rightarrow T}(T-t)^{\frac{m_2q_2+1-p_1}{m_1m_2q_1q_2-(1-p_1)(1-p_2)}}v(x, t)\nonumber\\&=&\Big\{ b|\Omega|^{\frac{q_2}{\beta}}(1-p_1)^{\frac{m_2q_2}{1-p_1}}\frac{m_1m_2q_1q_2-(1-p_1)(1-p_2)}{(1-p_2)(m_2q_2+1-p_1)}\Big\} ^{\frac{m_2q_2+1-p_1}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}\nonumber\\ &&\cdot\Big\{ |\Omega|^{\frac{q_1}{\alpha}-\frac{q_2}{\beta}}\frac{am_2q_2(m_1q_1+1-p_2)(1-p_2)^{\frac{m_1q_1}{1-p_2}}}{bm_1q_1(m_2q_2+1-p_1)(1-p_1) ^{\frac{m_2q_2}{1-p_1}}}\Big\}^{-\frac{m_2q_2}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}\nonumber\\ &&\cdot(1-p_2)^{\frac{1}{1-p_2}}. \end{eqnarray} $

  由于

$ \begin{array}{llll} G_1'(t)=g_1(t)=a\Big( \displaystyle\int_{\Omega} v^{m_1\alpha}dy\Big)^{\frac{q_1}{\alpha}}\sim a|\Omega|^{\frac{q_1}{\alpha}}\Big[(1-p_2)G_2(t)\Big]^{\frac{m_1q_1}{1-p_2}}, \\ G_2'(t)=g_2(t)=b\Big( \displaystyle\int_{\Omega} u^{m_2\beta}dy\Big)^{\frac{q_2}{\beta}}\sim b|\Omega|^{\frac{q_2}{\beta}}\Big[(1-p_1)G_1(t)\Big]^{\frac{m_2q_2}{1-p_1}}, \end{array} $

可得$\frac{G_1'(t)}{G_2'(t)}\sim\frac{a|\Omega|^{\frac{q_1}{\alpha}} [(1-p_2)G_2(t)]^{\frac{m_1q_1}{1-p_2}}}{b|\Omega|^{\frac{q_2}{\beta}}[(1-p_1)G_1(t)]^{\frac{m_2q_2}{1-p_1}}}$, 即$G_1'(t)G_1^{\frac{m_2q_2}{1-p_1}}(t)\sim|\Omega|^{\frac{q_1}{\alpha}-\frac{q_2}{\beta}}\frac{a(1-p_2)^{\frac{m_1q_1}{1-p_2}}}{b(1-p_1)^{\frac{m_2q_2}{1-p_1}}}G_2'(t)G_2 ^{\frac{m_1q_1}{1-p_2}}(t)$.将上面的式子在$(0, t)$上进行积分并利用等价的性质, 得到

$ \begin{array}{llll} G_1(t)\sim B^{\frac{1-p_1}{m_2q_2+1-p_1}}G_2^{\frac{(1-p_1)(m_1q_1+1-p_2)}{(1-p_2)(m_2q_2+1-p_1)}}(t), \ G_2(t)\sim B^{-\frac{1-p_2}{m_1q_1+1-p_2}}G_1^{\frac{(1-p_2)(m_2q_2+1-p_1)}{(1-p_1)(m_1q_1+1-p_2)}}(t), \end{array} $

其中$B=|\Omega|^{\frac{q_1}{\alpha}-\frac{q_2}{\beta}} \frac{a(m_2q_2+1-p_1)(1-p_2)^{\frac{m_1q_1+1-p_{2}}{1-p_2}}}{b(m_1q_1+1-p_2)(1-p_1)^{\frac{m_2q_2+1-p_{1}}{1-p_1}}}$.经过直接的计算

$ \begin{array}{llll} G_1(t)\sim&\Big\{ a|\Omega|^{\frac{q_1}{\alpha}}(1-p_2)^{\frac{m_1q_1}{1-p_2}}\frac{m_1m_2q_1q_2-(1-p_1)(1-p_2)}{(1-p_1)(m_1q_1+1-p_2)}\Big\} ^{\frac{(1-p_1)(m_1q_1+1-p_2)}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}\\ &\cdot\Big\{ |\Omega|^{\frac{q_1}{\alpha}-\frac{q_2}{\beta}}\frac{am_2q_2(m_1q_1+1-p_2)(1-p_2)^{\frac{m_1q_1}{1-p_2}}}{bm_1q_1(m_2q_2+1-p_1)(1-p_1) ^{\frac{m_2q_2}{1-p_1}}}\Big\}^{-\frac{m_1q_1(1-p_1)}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}\\ &\cdot(T-t)^{\frac{(1-p_1)(m_1q_1+1-p_2)}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}, \\ G_2(t)\sim&\Big\{ b|\Omega|^{\frac{q_2}{\beta}}(1-p_1)^{\frac{m_2q_2}{1-p_1}}\frac{m_1m_2q_1q_2-(1-p_1)(1-p_2)}{(1-p_2)(m_2q_2+1-p_1)}\Big\} ^{\frac{(1-p_2)(m_2q_2+1-p_1)}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}\\ &\cdot\Big\{ |\Omega|^{\frac{q_1}{\alpha}-\frac{q_2}{\beta}}\frac{am_2q_2(m_1q_1+1-p_2)(1-p_2)^{\frac{m_1q_1}{1-p_2}}}{bm_1q_1(m_2q_2+1-p_1)(1-p_1) ^{\frac{m_2q_2}{1-p_1}}}\Big\}^{-\frac{m_2q_2(1-p_2)}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}\\ &\cdot(T-t)^{\frac{(1-p_2)(m_2q_2+1-p_1)}{(1-p_1)(1-p_2)-m_1m_2q_1q_2}}, \end{array} $ (4.3)

由引理4.4的结论, 即

$ \lim\limits_{t\rightarrow T}\frac{u^{1-p_1}(x, t)}{(1-p_1)G_1(t)}=\lim\limits_{t\rightarrow T}\frac{\|u(\cdot, t)\|_\infty^{1-p_1}}{(1-p_1)G_1(t)}=\lim\limits_{t\rightarrow T}\frac{v^{1-p_2}(x, t)}{(1-p_2)G_2(t)}=\lim\limits_{t\rightarrow T}\frac{\|v(\cdot, t)\|_\infty^{1-p_2}}{(1-p_2)G_2(t)}=1. $

将上面的等式与(4.3)结合起来, 就得到了期望的结果.

参考文献
[1] Cui Zhoujin, Yang Zuodong. Roles of weight functions to a nonlinear porous medium equation with nonlocal source and nonlocal boundary condition[J]. J. Math. Anal. Appl., 2008, 342(1): 559–570. DOI:10.1016/j.jmaa.2007.11.055
[2] Lin zhigui, Liu Yurong. Uniform blow-up profile for diffusion equations with nonlocal source and nonlocal boundary[J]. Acta Math. Sci., 2004, 24B(3): 443–450.
[3] Du Lili. Blow-up for a degenerate reaction-diffusion system with nonlinear localized sources[J]. J. Math. Anal. Appl., 2006, 324(1): 304–320. DOI:10.1016/j.jmaa.2005.11.052
[4] Wang Minxing, Wei Yunfeng. Blow-up properties for a degenerate parabolic system with nonlinear localized sources[J]. J. Math. Anal. Appl., 2008, 343(2): 621–635. DOI:10.1016/j.jmaa.2008.01.073
[5] Fan Mingshu, Du Lili, He Qiaolin. Blow-up properties for a degenerate parabolic system with nonlinear localized sources[J]. J. Comput. Appl. Math., 2010, 235(1): 91–101. DOI:10.1016/j.cam.2010.05.015
[6] Lu Haihua, Wang Mingxin. Global solutions and blow-up problems for a nonlinear degenerate parabolic system coupled via nonlocal sources[J]. J. Math. Anal. Appl., 2007, 333(2): 984–1007. DOI:10.1016/j.jmaa.2006.11.023
[7] Du Lili, Mu Chunlai. Global existence and blow-up analysis to a degenerate reaction-diffusion system with nonlinear memory[J]. Nonl. Anal., 2008, 9(2): 303–315. DOI:10.1016/j.nonrwa.2006.10.005
[8] Deng Wenbo. Global existence and finite time blow-up for a degenerate reaction-diffusion system[J]. Nonl. Anal., 2005, 60(5): 977–991. DOI:10.1016/j.na.2004.10.016
[9] Du Lili. Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources[J]. J. Comput. Appl. Math., 2007, 202(2): 237–247. DOI:10.1016/j.cam.2006.02.028
[10] Deng Wenbo, Li Yangxing, Xie Chunhua. Existence and nonexistence of global solutions of some nonlocal degenerate parabolic equations[J]. Appl. Math. Lett., 2003, 16(5): 803–808. DOI:10.1016/S0893-9659(03)80118-0
[11] Fila M, Quittner P. The blow-up rate for a semilinear parabolic system[J]. J. Math. Anal. Appl., 1999, 238(2): 468–476. DOI:10.1006/jmaa.1999.6525
[12] Souplet Ph. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source[J]. J. Diff. Equa., 1999, 153(2): 374–406. DOI:10.1006/jdeq.1998.3535
[13] Wang Mingxi. Blow-up rate estimates for semilinear parabolic systems[J]. J. Diff. Equa., 2001, 170(2): 317–324. DOI:10.1006/jdeq.2000.3823
[14] Lin Zhigui, Xie Chunhua. The blow-up rate for a system of heat equations with nonlinear boundary conditions[J]. Nonl. Anal., 1998, 34(5): 767–778. DOI:10.1016/S0362-546X(97)00573-7
[15] Day WA. Extensions of property of heat equation to linear thermoelasticity and other theories[J]. Quart. Appl. Math., 1982, 40(3): 319–330. DOI:10.1090/qam/1982-40-03
[16] Day WA. A decreasing property of solutions of parabolic equations with applications to thermoelasticity[J]. Quart. Appl. Math., 982/83, 40(1): 468–475.
[17] Diaz J I, Kersner R. On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium[J]. J. Diff. Equa., 1987, 69(3): 368–403. DOI:10.1016/0022-0396(87)90125-2
[18] Cantrell R S, Cosner C. Diffusive logistic equations with indefinite weights:population models in disrupted environments Ⅱ[J]. SIAM J. Math. Anal., 1991, 22(4): 1043–1064. DOI:10.1137/0522068
[19] Furter J, Grinfeld M. ocal vs. nonlocal interactions in population dynamics[J]. J. Math. Biol., 1989, 27(1): 65–80. DOI:10.1007/BF00276081
[20] Carlson D E. Linear thermoelasticity, encyclopedia of physics, Vol.2[M]. Berlin: Springer, 1972.
[21] 陈佳佳, 穆春来. 一类非线性抛物方程组解的爆破时间上下界估计[J]. 数学杂志, 2012, 32(5): 897–903.
[22] Li Mei, Xie Chunhong. Global existence and blow-up of solutions for degenerate paraboloc systems[J]. J. Math., 2004, 24(2): 197–203.
[23] Galaktionov V A, Kurdyumov S P, Samarskii A A. A parabolic system of quasi-linear equations Ⅰ[J]. Diff. Equa., 1983, 19(3): 1558–1571.
[24] Galaktionov V A, Kurdyumov S P, Samarskii A A. A parabolic system of quasi-linear equations Ⅱ[J]. Diff. Equa., 1985, 21(1): 1049–1062.
[25] Ye Zhuan, Xu Xiaojing. Global existence and blow-up for a porous medium system with nonlocal boundary conditions and nonlocal sources[J]. Nonl. Anal., 2013, 82(1): 115–126.