数学杂志  2017, Vol. 37 Issue (5): 1054-1064   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
沈文国
奇异高阶积分边值问题正解的全局结构
沈文国    
兰州工业学院基础学科部, 甘肃兰州 730050
摘要:本文研究了带Riemann-Stieltjes积分边值条件的奇异高阶积分边值问题正解的全局分歧结构.利用相关文献,获得了此类问题的格林函数并推证其满足的性质,同时可获得此类问题等价于一个全连续算子方程;其次,在满足所给的条件时,利用Krein-Rutmann定理建立了此类问题对应的线性问题存在简单的主特征值;最后,当非线性项在零和无穷远处满足非渐进线性增长条件、参数满足不同范围的值时,利用Dancer全局分歧定理、Zeidler全局分歧定理和序列集取极限的方法,建立了此类问题正解的全局结构,进而获得了正解的存在性,推广了文献[8]中的主要结果.
关键词奇异高阶积分边值问题    全局分岐    正解    
GLOBAL BIFURCATION OF POSITIVE SOLUTIONS FOR SINGULAR HIGH-ORDER PROBLEMS INVOLVING STIELTJES INTEGRAL CONDITIONS
SHEN Wen-guo    
Department of Basic Courses, Lanzhou Institute of Technology, Lanzhou 730050, China
Abstract: In this paper, we establish global bifurcation structure of positive solutions for a class of singular higher-order boundary value problems. First, according to the relevant literature, we obtain that the Green fuction and its property for the above problem. Meanwhile, we can obtain that the above problem is equivalent to the completely continuous operator equation. Second, we have that the above linear problem exists simple principal eigenvalue by the Krein-Rutman theorem. Finally, we establish the global bifurcation structure of positive solutions with non-asymptotic nonlinearity at or by Dancer and Zeidler global bifurcation theorems and the approximation of connected components which extends and improves the corresponding results of Shen [8].
Key words: high-order singular boundary problems     global bifurcation     positive solutions    
1 引言

利用锥上不动点理论, 文献[1-6]研究了边值问题正解的存在性; 文献[7-8]研究了带Riemann-Stieltjes积分边值条件的高阶问题, 其中2012年, 当$r a(t)f(x)=\lambda f(t, x)$时, 文献[8]研究了下列奇异高阶问题

$\left\{ \begin{array}{l} {x^{(n)}}(t) + ra(t)f(x) = 0,{\mkern 1mu} {\mkern 1mu} 0 < t < 1,\\ x(0) = \int_0^1 {x(t)d\alpha (t)} ,{\mkern 1mu} {\mkern 1mu} x'(0) = \cdots = {x^{(n - 2)}}(0) = 0,{\mkern 1mu} {\mkern 1mu} x(1) = \int_0^1 {x(t)d\beta (t),} \end{array} \right.$ (1.1)

其中$f(t, x)$$t=0, t=1$处奇异, $\alpha, \, \, \beta:[0,1]\rightarrow \Re$分别是有界变差函数.

应用分歧方法, 文献[9-11]研究了二阶边值问题; 文献[12-14]研究了四阶边值问题; 文献[15]研究了高维问题; 文献[16-17]研究了带Riemann-Stieltjes积分边值条件问题.

受上述文献的启发, 本文研究奇异高阶含Riemann-Stieltjes积分边值条件的问题(1.1) 正解的存在性问题.本文做如下假设

(H1) 假设$\alpha, \, \, \beta:[0,1]\rightarrow \Re$分别是非减函数且在[0, 1]上不恒为常数. ${g_\alpha }(s) = \int_0^1 {k(t,s)d\alpha (t)} $, ${g_\beta }(s) = \int_0^1 {k(t,s)d\beta (t)} $ $g_{\alpha}(s)\geq0$$g_{\alpha}(s)\geq0, g_{\beta}(s)\geq0, \forall s\in[0,1]$;

(H2)

$\begin{array}{l} 0 < \int_0^1 {(1 - {t^{n - 1}})d\alpha (t) < 1} ,0 < \int_0^1 {{t^{n - 1}}d\beta (t) < 1,} \\ 0 < \int_0^1 {(1 - {t^{n - 1}})d\beta (t) < \infty } ,0 < \int_0^1 {{t^{n - 1}}d\alpha (t) < \infty ,} \end{array}$
$D = \int_0^1 {{t^{n - 1}}d\alpha (t)} \left( {1 - \int_0^1 {d\beta (t)} } \right) + \left( {1 - \int_0^0 {d\alpha (t)} } \right)\left( {1 - \int_0^1 {{t^{n - 1}}d\beta (t)} } \right) > 0;$

(H3) $a(\cdot)\in C((0, 1), [0, \infty))$, 在$(0, 1)$的任何子区间上$a(t)\not\equiv0$, 且

$0 < \int_0^1 k (\tau (s),s)a(s)ds < \infty ,0 < \int_0^1 {{k_i}({\tau _i}(s),s)a(s)ds < \infty } ,$

$k(\tau(s), s), k_{i}(\tau_{i}(s), s)$分别由引理2.2与引理2.3给出;

(H4) $f(\cdot)\in C([0, \infty), [0, \infty))$, 对任何$s>0$, 都有$f(s)>0$成立;

(H5) $f_{0}, f_{\infty}\in (0, +\infty)$;

(H6) $f_{0}\in (0, +\infty)$$f_{\infty}=\infty;$

(H7) $f_{0}=0$$f_{\infty}=\infty;$

(H8) $f_{0}=\infty$$f_{\infty}=\infty, $

其中

${f_0} = \mathop {\lim }\limits_{s \to {0^ + }} \frac{{f(s)}}{s},{f_\infty } = \mathop {\lim }\limits_{s \to + \infty } \frac{{f(s)}}{s},{f_0} = \mathop {\lim }\limits_{s \to {0^ + }} \frac{{f(s)}}{s},{f_\infty } = \mathop {\lim }\limits_{s \to + \infty } \frac{{f(s)}}{s}.$

本章安排如下:在第二部分给出格林函数及其性质; 第三部分给出预备知识; 第四部分给出问题(1.1) 至少存在一个正解的主要定理及证明.

2 格林函数及其性质

考虑如下边值问题

$\left\{ \begin{array}{l} {x^{(n)}}(t) + y(t) = 0,0 < t < 1,\\ x(0) = \int_0^1 {x(t)d\alpha (t)} ,{\mkern 1mu} {\mkern 1mu} x'(0) = \cdots = {x^{(n - 2)}}(0) = 0,{\mkern 1mu} {\mkern 1mu} x(1) = \int_0^1 {x(t)d\beta (t)} . \end{array} \right.$ (2.1)

引理2.1  (见文献[8, 引理1])假设条件(H1) 和(H2) 成立.对于任何$y\in C[0,1]$, 则问题(2.1) 存在唯一解

$x(t) = \int_0^1 {K(t,s)y(s)ds} ,$ (2.2)

其中

$K(t,s) = k(t,s) + \frac{{A(t)}}{D}{g_\alpha }(s) + \frac{{B(t)}}{D}{g_\beta }(s),$ (2.3)
$k(t,s) = \frac{1}{{(n - 1)!}}\left\{ {\begin{array}{*{20}{l}} {{t^{n - 1}}{{(1 - s)}^{n - 1}} - {{(t - s)}^{n - 1}},}&{{\rm{0}} \le s \le t \le {\rm{1}},}\\ {{t^{n - 1}}{{(1 - s)}^{n - 1}},}&{{\rm{0}} \le t \le s \le {\rm{1}}} \end{array}} \right.$ (2.4)
$\begin{array}{l} A(t) = \left( {1 - \int_0^1 {{t^{n - 1}}d\beta (t)} } \right) - \left( {1 - \int_0^1 {d\beta (t)} } \right){t^{n - 1}},\\ B(t) = \int_0^1 {{t^{n - 1}}d\alpha (t)} + \left( {1 - \int_0^1 {d\alpha (t)} } \right){t^{n - 1}},\\ D = \int_0^1 {{t^{n - 1}}d\alpha (t)} \left( {1 - \int_0^1 {d\beta (t)} } \right) + \left( {1 - \int_0^1 {d\alpha (t)} } \right)\left( {1 - \int_0^1 {{t^{n - 1}}d\beta (t)} } \right),\\ {g_\alpha }(s) = \int_0^1 {k(t,s)d\alpha (t)} ,{\mkern 1mu} {\mkern 1mu} {g_\beta }(s) = \int_0^1 {k(t,s)d\alpha (t)} . \end{array}$

引理2.2 (见文献[8, 引理2])由$(2.4)$式定义的$k(t, s)$满足下列性质

$c(t)k(\tau(s), s)\leq k(t, s)\leq k(\tau(s), s), \, \, \forall t, \, \, s\in[0,1],$ (2.5)

其中

$\begin{array}{l} \tau (s) = \frac{s}{{1 - {{(1 - s)}^{\frac{{n - 1}}{{n - 2}}}}}},{\mkern 1mu} {\mkern 1mu} k(\tau (s),s) = \frac{{\tau {{(s)}^{n - 2}}s{{(1 - s)}^{n - 1}}}}{{(n - 1)!}},\\ c(t) = \min \left\{ {\frac{{{{(n - 1)}^{n - 1}}{t^{n - 2}}(1 - t)}}{{{{(n - 2)}^{n - 2}}}},{\mkern 1mu} {\mkern 1mu} {t^{n - 1}}} \right\}. \end{array}$ (2.6)

引理2.3  $k(t, s)$由(2.4) 式定义, $i=2, \cdots, n$, 下式成立

$\frac{{{\partial ^{(i - 1)}}}}{{\partial {t^{(i - 1)}}}}k(t,s) = {k_i}(t,s) = \frac{1}{{(n - i)!}}\left\{ {\begin{array}{*{20}{l}} {{t^{n - i}}{{(1 - s)}^{n - 1}} - {{(t - s)}^{n - i}},}&{0 \le s \le t \le 1,}\\ {{t^{n - i}}{{(1 - s)}^{n - i}},}&{0 \le t \le s \le 1} \end{array}} \right.$ (2.7)

并且$k_{i}(t, s)$满足

$c_{i}(t)k_{i}(\tau_{i}(s), s)\leq k_{i}(t, s)\leq k_{i}(\tau_{i}(s), s), \, \, \forall t, \, \, s\in[0,1],$ (2.8)

其中

$\begin{array}{l} {\tau _i}(s) = \frac{s}{{1 - {{(1 - s)}^{\frac{{n - 1}}{{n - i - 2}}}}}},{\mkern 1mu} {\mkern 1mu} {k_i}({\tau _i}(s),s) = \frac{{{\tau _i}{{(s)}^{n - i - 2}}s{{(1 - s)}^{n - 1}}}}{{(n - i - 1)!}},\\ {c_i}(t) = \min \left\{ {\frac{{{{(n - i - 1)}^{n - i - 1}}{t^{n - i - 2}}(1 - t)}}{{{{(n - i - 2)}^{n - i - 2}}}},{\mkern 1mu} {\mkern 1mu} {t^{n - i - 1}}} \right\}. \end{array}$ (2.9)

    相似于文献[7]第1937-1938页中定理3.1的证明方法, 易得引理2.3, 故证明略.

引理2.4 (见文献[8, 引理3])假设条件(H1) 和(H2) 成立.由$(2.3)$式定义的$K(t, s)$满足下列性质

(ⅰ) $K(t, s)$$[0,1]\times[0,1]$上连续且$K(t, s)\geq0$;

(ⅱ) 对于任意$t, \, \, s\in[0,1]$都有$K(t, s)\leq K(s)$成立, 对于任意$t, \, \, s\in[0,1]$, 下式成立

$\mathop {\min }\limits_{t \in [0,1]} K(t,s) \ge q(t)K(s),{\mkern 1mu} {\mkern 1mu} \forall s \in [0,1],$ (2.10)

其中

$\begin{array}{l} K(s) = k(\tau (s),s) + \frac{{{M_1}}}{D}{g_\alpha }(s) + \frac{{{M_2}}}{D}{g_\beta }(s),\\ q(t) = \min \left\{ {c(t),{\mkern 1mu} {\mkern 1mu} \frac{{A(t)}}{{{M_1}}},\frac{{B(t)}}{{{M_2}}}} \right\}, \end{array}$ (2.11)
$\begin{array}{l} {M_1} = \max \left\{ {1 - \int_0^1 {{t^{n - 1}}d\beta (t)} ,\int_0^1 {(1 - {t^{n - 1}})d\beta (t)} } \right\},{\mkern 1mu} {\mkern 1mu} \\ {M_2} = \max \left\{ {\int_0^1 {{t^{n - 1}}d\alpha (t)} ,1 - \int_0^1 {(1 - {t^{n - 1}})d\alpha (t)} } \right\}. \end{array}$ (2.12)

引理2.5 (见文献[8, 引理4])假设条件(H1) 和(H2) 成立.则对于$y \in C[0,1]$$y\geq0$, (2.1) 式的唯一解满足

(ⅰ) $x(t)\geq0, $ $\forall t\in[0,1]$;

(ⅱ) $\mathop {\min }\limits_{t \in [0,1]} x(t) \ge q(t)\|x\|$,

其中$q(t)$由引理2.3 (ⅱ)给出.

3 预备知识

$Y=C[0,1], $其上范数为$\|x\|_{\infty}=\max\limits_{t\in[0,1]}|x(t)|.$

$E=\{x\in C^{n-1}[0,1]|x(0)=\alpha[x], x'(0)=\cdots=x^{(n-2)}(0)=0, x(1)=\beta[x]\}, $其上范数为

$\|x\|_{E}=\max\{\|x\|_{\infty}, \, \, \|x'\|_{\infty}, \cdots\|x^{(n-1)}\|_{\infty}\}.$

定义算子$L:D(L)\subset E\rightarrow E, $ $Lx=x^{(n)}, x\in D(L), $其中

$D(L)=\{x\in C^{n}[0,1]|x(0)=\alpha[x], x'(0)=\cdots=x^{(n-2)}(0)=0, x(1)=\beta[x]\}.$

容易验证$L$为闭算子且$L^{-1}:Y\rightarrow D(L)$是全连续算子.

$\Sigma$为(1.1) 在$[0, \infty)\times E$上正解集合的闭包.

定义锥

$P=\{x\in C[0,1]|x(t)\geq0, t\in[0,1], \min\limits_{t\in[\delta, 1-\delta]}x(t)\geq q(t)\|x\|_{\infty}\},$

其中$q(t)$由引理2.3 (ⅱ)给出, 且对于$r > 0$, 令$\Omega_{r}=\{x\in P | \|x\|_{E} < r\}.$

首先考虑线性问题

$\begin{array}{l} {x^{(n)}} = \lambda a(t)x(t),{\mkern 1mu} {\mkern 1mu} t \in (0,1),\\ x(0) = \alpha [x],x'(0) = \cdots = {x^{(n - 2)}}(0) = 0,x(1) = \beta [x]. \end{array}$

$\begin{array}{l} {L_\lambda }x(t) = \lambda \int_0^1 {K(t,s)a(s)x(s)ds} ,t \in [0,1].\\ {T_\lambda }x(t) = \lambda \int_0^1 {K(t,s)a(s)f(x(s))ds} ,t \in [0,1]. \end{array}$

由Krein-Rutmann定理(见文献[18, 定理2.5], 亦可参考文献[19]或[20]), 可得下列引理.

引理3.1 设(H1)-(H3) 成立, $r(L_{\lambda})$$L_{\lambda}$的谱半径.则$r(L_{\lambda})\neq0$$L_{\lambda}$有一个对应于第一特征值$\lambda_{1}=\frac{1}{r(L_{\lambda})}$的正的特征函数$\phi_{1}\in\mathrm{int}P$, 它是简单的并且再没有别的特征值对应正的特征函数.

引理3.2 设(H1)-(H4) 成立, 则问题$(1.1)$的解$x(t)$满足

$\|x(t)\|_{\infty}\leq\frac{1}{1-\alpha[1]}\|x'\|_{\infty}, \|x'\|_{\infty}\leq\|x''\|_{\infty}, \cdots, \|x^{(n-2)}\|_{\infty}\leq\|x^{(n-1)}\|_{\infty}.$

    由$|\int_0^1 {x(s)d\alpha (s)} | \le \mathop {\max }\limits_{s \in [0,1]} |x(s)| \cdot \alpha [1]$$x(0) = \int_0^1 {x(s)d\alpha (s)} ,$可得

$\mathop {\max }\limits_{t \in [0,1]} |x(t)| = \mathop {\max }\limits_{t \in [0,1]} \left| {x(0) + \int_0^t {x'(s)ds} } \right| \le \mathop {\max }\limits_{t \in [0,1]} |x(t)|\alpha [1] + \int_0^1 {\left| {x'(s)} \right|ds} ,$

$\mathop {\max }\limits_{t \in [0,1]} |x(t)| \le \frac{1}{{1 - \alpha [1]}}\int_0^1 {\left| {x'(s)} \right|ds} .$

进而$\|x(t)\|_{\infty}\leq\frac{1}{1-\alpha[1]}\|x'\|_{\infty}.$$x'(0)=0, $可得

$|x'(t)| = \left| {x'(0) + \int_0^t {x''(s)ds} } \right| \le \left| {\int_0^1 {x''(s)ds} } \right| \le \int_0^1 {\left| {x''(s)} \right|ds} ,$

进而$ \|x'\|_{\infty}\leq\|x''\|_{\infty}. $继续这样一个过程, 由条件$x'(0)=x''(0)=\cdots=x^{(n-2)}(0)=0$, 可得

$\|{x}''{{\|}_{\infty }}\le \|{x}'''{{\|}_{\infty }},\cdots \|{{x}^{(n-2)}}{{\|}_{\infty }}\le \|{{x}^{(n-1)}}{{\|}_{\infty }}.$

结论获证.

引理3.3    设(H1)-(H4) 成立.假设$\{(\mu_{k}, x_{k})\}\subset(0, \infty)\times P$是问题(1.1) 的一个正解序列, 存在常数$c_{0} > 0$, 使得$\|\mu_{k}\|\leq c_{0}$, 且

$\mathop {\lim }\limits_{k \to \infty } \|{x_k}\|{_E} = \infty ,$ (3.1)

$\mathop {\lim }\limits_{k \to \infty } \|{x_k}\|{_\infty } = \infty .$

  反设存在常数$M_{0} > 0$, 使得$\|x_{k}\|_{\infty}\leq M_{0}.$由于$(\mu_{k}, x_{k})$是问题(1.1) 的正解, 则

${x_k}(t) = {\mu _k}\int_0^1 {K(t,s)a(s)f({x_k}(s))ds} ,t \in [0,1].$

进而

$x_k^{(n - 1)}(t) = {\mu _k}\int_0^1 {\frac{{{\partial ^{(n - 1)}}}}{{\partial {t^{(n - 1)}}}}K(t,s) \cdot a(s)f({x_k}(s))ds} .$ (3.2)

$\begin{array}{l} \frac{{{\partial ^{(n - 1)}}}}{{\partial {t^{(n - 1)}}}}K(t,s) = \left| {\frac{{{\partial ^{(n - 1)}}}}{{\partial {t^{(n - 1)}}}}k(t,s) + \frac{{{g_\alpha }(s)}}{D}\frac{{{d^{(n - 1)}}A(t)}}{{{d^{(n - 1)}}t}} + \frac{{{g_\beta }(s)}}{D}\frac{{{d^{(n - 1)}}B(t)}}{{{d^{(n - 1)}}t}}} \right|\\ \quad \quad \quad \quad \quad \quad \le {\Phi _1}(s) + {\Phi _2}(s), \end{array}$ (3.3)

其中

$ \Phi_{1}(s):=\frac{\partial^{(n-1)}}{\partial t^{(n-1)}}k(t, s)=(1-s)^{n-1}, \\ \Phi_{2}(s):=\frac{(n-1)![(1-\alpha[1])\alpha[1]+(1-\beta[1])\beta[1]]}{D}k(\tau(s), s).$

由(H3) 可得

$0 < \int_0^1 {{\Phi _1}a(s)ds < \infty } ,0 < \int_0^1 {{\Phi _2}a(s)ds < \infty } .$ (3.4)

假设$b = \mathop {\max }\limits_{s \in [0,{M_0}]} \{ f(s)\} $, 结合(3.2), (3.3) 和(3.4) 式, 可得

$\|x_{k}^{(n-1)}(t){{\|}_{\infty }}\le b\cdot \left[ \int_{0}^{1}{{{\Phi }_{1}}(s)a(s)ds}+\int_{0}^{1}{{{\Phi }_{1}}(s)a(s)ds.} \right]$

即由$\|x_{k}(t)\|_{\infty}$有界可推出$\|x_{k}^{(n-1)}(t)\|_{\infty}$有界.

结合引理3.2, 存在常数$M_{2} > 0$满足$\|x_{k}(t)\|_{E}\leq M_{2}.$与已知条件矛盾, 结论获证.

引理3.4 (见文献[17]) 设$X$是一个Banach空间且令$\{C_{n}|n=1, 2, \cdots\}$$X$中的闭连通分支序列.假设

(ⅰ) 存在$z_{n}\in C_{n}, \, \, n=1, 2, \cdots$$z^{\ast}\in X$, 使得$z_{n}\rightarrow z^{\ast}$;

(ⅱ) $r_{n}=\sup\{\|x\||x\in C_{n}\}=\infty;$

(ⅲ) 对所有$R>0$, $\left(\cup_{n=1}^{\infty}C_{n}\right)\cap B_{R}$$X$中的相对紧子集, 其中$ B_{R}=\{x\in X|\|x\|\leq R\}. $

则在$\mathbb{D}$中存在一个无界连通分支$C$使得$z^{\ast}\in C, $其中$\mathbb{D}:=\underset{n\to \infty }{\mathop{\lim \sup }}\,{{C}_{n}}=\{x\in X|\exists \{{{n}_{i}}\}\subset \mathbb{N}$$x_{n_{i}}\in C_{n_{i}}$, 使得$x_{n_{i}}\rightarrow x\}$ (见文献[21]).

4 主要结果

首先考虑下列特征值问题

$\left\{ \begin{align} &{{x}^{(n)}}(t)+\lambda ra(t)f(x)=0,0<t<1, \\ &x(0)=\int_{0}^{1}{x(t)d\alpha (t)},{x}'(0)=\cdots ={{x}^{(n-2)}}(0)=0,x(1)=\int_{0}^{1}{x}(t)d\beta (t), \\ \end{align} \right.$ (4.1)

其中$\lambda>0$是一个参数.

$\zeta\in C(\mathbb{R})$使得$f(x)=f_{0}x+\zeta(x)$且满足$\mathop {\lim }\limits_{|s| \to 0} \frac{{\zeta (s)}}{s} = 0.$

考虑

$\left\{ \begin{array}{l} {x^{(n)}}(t) + \lambda ra(t){f_0}x + \lambda ra(t)\zeta (x) = 0,0 < t < 1,\\ x(0) = \int_0^1 {x(t)d\alpha (t)} ,{\mkern 1mu} {\mkern 1mu} x'(0) = \cdots = {x^{(n - 2)}}(0) = 0,{\mkern 1mu} {\mkern 1mu} x(1) = \int_0^1 {x(t)d\beta (t)} \end{array} \right.$ (4.2)

作为从平凡解$x\equiv0$发出的一个分岐问题.方程(4.2) 等价于

$\begin{array}{l} x(t) = \int_0^1 {G(t,s)\left[ {\lambda ra(s){f_0}x(s) + \lambda ra(s)\zeta (x(s))} \right]ds} \\ \quad \quad : = \lambda {L^{ - 1}}\left[ {ra( \cdot ){f_0}x( \cdot )} \right](t) + \lambda {L^{ - 1}}\left[ {ra( \cdot )\zeta (x( \cdot ))} \right](t). \end{array}$

进而可以证明

$\|L^{-1}[a(\cdot)\zeta(x(\cdot))]\|_{E}=o(\|x\|_{E}), |x\|_{E}\rightarrow0\, .$ (4.3)

事实上, 对所有$(t, s)\in[0,1]\times[0,1], $由引理2.1-2.3可得

$K_{i}(t, s)=k_{i}(t, s)+\frac{g_{\alpha}(s)}{D}A_{i}(t)+\frac{g_{\beta}(s)}{D}B_{i}(t),$

其中

$\begin{array}{l} \frac{{{\partial ^{(i - 1)}}}}{{\partial {t^{(i - 1)}}}}K(t,s) = {K_i}(t,s)({K_i}(t,s)由{\rm{(2}}{\rm{.7)}} 式给出),\\ {A_i}(t) = \frac{{{d^{(i - 1)}}A}}{{{d^{(i - 1)}}t}} = \left\{ {\begin{array}{*{20}{l}} {A(t),}&{i = 1,}\\ { - (1 - \int_0^1 {d\beta (t))P_{n - 1}^{i - 1}{t^{n - i}}} ,}&{i = 2, \cdots ,n,} \end{array}} \right.\\ {B_i}(t) = \frac{{{d^{(i - 1)}}B}}{{{d^{(i - 1)}}t}} = \left\{ {\begin{array}{*{20}{l}} {B(t),}&{i = 1,}\\ {(1 - \int_0^1 {d\alpha (t))P_{n - 1}^{i - 1}{t^{n - i}}} ,}&{i = 2, \cdots ,n.} \end{array}} \right. \end{array}$

则对于任意$t, \, \, s\in[0,1]$, $i=1, \cdots, n$, 都有

$\begin{array}{l} |{K_i}(t,s)| \le {k_i}(t,s) + \frac{{|{A_i}(t)|}}{D}{g_\alpha }(s) + \frac{{|{B_i}(t)|}}{D}{g_\beta }(s),{\mkern 1mu} {\mkern 1mu} \\ \quad \quad \quad \quad \le {k_i}(t,s) + \frac{{{M_{i1}}}}{D}\int_0^1 {k(t,s)d\alpha (t)} + \frac{{{M_{i2}}}}{D}\int_0^1 {k(t,s)d\beta (t)} \\ \quad \quad \quad \quad \le {k_i}({\tau _i}(s),s) + \frac{{{M_{i1}}\int_0^1 {d\alpha (t) + {M_{i2}}} \int_0^1 {d\beta (t)} }}{D}k(\tau (s),s), \end{array}$ (4.4)

其中

$\begin{array}{l} {M_{i1}} = \left\{ {\begin{array}{*{20}{l}} {{M_1},}&{i = 1,}\\ {\left| {1 - \int_0^1 {d\beta (t)} } \right|P_{n - 1}^{i - 1},}&{i = 2, \cdots ,n,} \end{array}} \right.\\ {M_{i2}} = \left\{ {\begin{array}{*{20}{l}} {{M_2},}&{i = 1,}\\ {\left| {1 - \int_0^1 {d\alpha (t)} } \right|P_{n - 1}^{i - 1},}&{i = 2, \cdots ,n.} \end{array}} \right. \end{array}$

由(4.4) 式, $i=1, \cdots, n$, 可得

$\begin{array}{l} \left| {{{\left( {{L^{ - 1}}\left[ {a( \cdot )\zeta (x( \cdot ))} \right](t)} \right)}^{(i - 1)}}} \right| = \left| {\int_0^1 {\frac{{{\partial ^{i - 1}}}}{{\partial {t^{i - 1}}}}K(t,s)a(s)\zeta (x(s))ds} } \right|\\ \le \int_0^1 {\left[ {{k_i}({\tau _i}(s),s)a(s) + \frac{{{M_{i1}}\int_0^1 {\alpha (t)} + {M_{i2}}\int_0^1 {\beta (t)} }}{D}k(\tau (s),s)a(s)} \right]} \zeta (x(s))ds. \end{array}$

$L^{-1}$的紧性结合(H3), $i=1, \cdots, n$, 可得

$\|(L^{-1}[a(\cdot)\zeta(x(\cdot))])^{(i-1)}\|_{\infty}=o(\|x\|_{\infty}), $

进而$i=1, \cdots, n$, $\|(L^{-1}[a(\cdot)\zeta(x(\cdot))])^{(i-1)}\|_{\infty}=o(\|x\|_{E}).$即(4.3) 式得证.

由引理3.1和全局分岐定理(可参考Dancer[22]和Zeidler[23]推论15.12), 对于问题(4.2), 可得如下结论.

引理4.1    令(H1)-(H5) 成立, $(\frac{\lambda_{1}}{rf_{0}}, 0)$是问题(4.2) 的一个分岐点.进而, 存在(4.2) 式正解的一个连通分支$\mathscr{C}$, 满足$\mathscr{C}(\subset[0, \infty)\times E)$, 并且$\mathscr{C}$$[0, \infty)\times P$中连接$\left(\frac{\lambda_{1}}{rf_{0}}, 0\right)$$\left(\frac{\lambda_{1}}{rf_{\infty}}, \infty\right)$.

注4.1    问题(4.1) 的形如$(1, x)$的任何解将产生问题$(1.1)$的一个解$x$.为了获得结论, 仅仅证明$\mathscr{C}$$[0, \infty)\times P$中穿过超平面$\{1\}\times E$即可.

下面是本文主要结果.

定理4.1    令(H1)-(H5) 成立.要么$\lambda_{1}/ f_{\infty}<r<\lambda_{1}/ f_{0}$成立, 要么$\lambda_{1}/ f_{0}<r<\lambda_{1}/ f_{\infty}$成立.则问题(1.1) 至少有一个正解.

    由引理4.1易得结论, 故证明略.

定理4.2    令(H1)-(H4) 和(H6) 成立.假设$r\in(0, \frac{\lambda_{1}}{f_{0}})$.则问题(1.1) 至少有一个正解.

    受文献[24]的启发, 可以定义截断函数$f$如下

${f^{[n]}}(s): = \left\{ {\begin{array}{*{20}{l}} {f(s),}&{s \in [ - n,n],}\\ {\frac{{2{n^2} - f(n)}}{n}(s - n) + f(n),}&{s \in (n,2n),}\\ {\frac{{2{n^2} + f( - n)}}{n}(s + n) + f( - n),}&{s \in ( - 2n, - n),}\\ {ns,}&{s \in ( - \infty , - 2n] \cup [2n, + \infty ).} \end{array}} \right.$

考虑

$\left\{ \begin{array}{l} {x^{(n)}}(t) + \lambda ra(t){f^{[n]}}(x) = 0,0 < t < 1,\\ x(0) = \int_0^1 {x(t)d\alpha (t)} ,{\mkern 1mu} {\mkern 1mu} x'(0) = \cdots = {x^{(n - 2)}}(0) = 0,{\mkern 1mu} {\mkern 1mu} x(1) = \int_0^1 {x(t)d\beta (t)} . \end{array} \right.$ (4.5)

显然, 可得

$\mathop {\lim }\limits_{n \to + \infty } {f^{[n]}}(s) = f(s),{({f^{[n]}})_0} = {f_0},{({f^{[n]}})_\infty } = n.$

相似于定理4.1, 由引理4.1可知, 存在问题(4.5) 从$(\frac{\lambda_{1}}{rf_{0}}, 0)$发出的一个解的无界连通分支$\mathscr{C}^{[n]}$, 满足$\mathscr{C}^{[n]}\subset([0, \infty)\times E)$, 并且$\mathscr{C}^{[n]}$$[0, \infty)\times P$中连接$(\frac{\lambda_{1}}{rf_{0}}, 0)$$(\frac{\lambda_{1}}{nr}, \infty)$.

$z_{n}=(\frac{\lambda_{1}}{nr}, \infty)$$z^{\ast}=(0, \infty), $$z_{n}\rightarrow z^{\ast}.$因此引理3.4 (ⅰ)满足且$z^{\ast}=(0, \infty).$显然

$r_{n}=\sup\left\{\lambda+\|x\||(\lambda, x)\in \mathscr{C}^{[n]}\right\}=\infty,$

相应的, 引理3.4 (ⅱ)成立.由Arezela-Ascoli定理和$f^{[n]}$直接可得引理3.4 (ⅲ).因此由引理3.4可知$\mathop {\lim \sup }\limits_{n \to \infty } {{\mathscr {C}}^{[n]}}$包括一个无界连通分支$\mathscr{C}$满足$(\infty, 0)\in \mathscr{C}$并且$(\frac{\lambda_{1}}{rf_{0}}, 0)\in \mathscr{C}$.

定理4.3    令(H1)-(H4) 和(H7) 成立.假设$r\in(0, +\infty)$.则问题(1.1) 至少有一个正解.

    定义

${f^{[n]}}(s): = \left\{ {\begin{array}{*{20}{l}} {f(s),}&{s \in [ - \infty , - \frac{2}{n}] \cup [\frac{2}{n},\infty ],}\\ { - \left[ {f( - \frac{2}{n}) + \frac{1}{{{n^2}}}} \right](ns + 2) + f( - \frac{2}{n}),}&{s \in ( - \frac{2}{n}, - \frac{1}{n}),}\\ {\left[ {f(\frac{2}{n}) - \frac{1}{{{n^2}}}} \right](ns - 2) + f(\frac{2}{n}),}&{s \in (\frac{1}{n},\frac{2}{n}),}\\ {\frac{1}{n}s,}&{s \in \left[ { - \frac{1}{n},\frac{1}{n}} \right].} \end{array}} \right.$

考虑问题

$\left\{ \begin{array}{l} {x^{(n)}}(t) + \lambda ra(t){f^{[n]}}(x) = 0,0 < t < 1,\\ x(0) = \int_0^1 {x(t)d\alpha (t)} ,{\mkern 1mu} {\mkern 1mu} x'(0) = \cdots = {x^{(n - 2)}}(0) = 0,{\mkern 1mu} {\mkern 1mu} x(1) = \int_0^1 {x(t)d\beta (t)} . \end{array} \right.$ (4.6)

显然, 可得

$\mathop {\lim }\limits_{n \to + \infty } {f^{[n]}}(s) = f(s),{({f^{[n]}})_0} = \frac{1}{n},{({f^{[n]}})_\infty } = {f_\infty } = \infty .$

相似于定理4.2的证明方法, 由引理4.1可知, 问题(4.6) 存在从$(\frac{n\lambda_{1}}{r}, 0)$发出的一个解的无界连通分支$\mathscr{C}^{[n]}$, 满足$\mathscr{C}^{[n]}\subset([0, \infty)\times E)$, 并且$\mathscr{C}^{[n]}$$[0, \infty)\times P$中连接$(\frac{n\lambda_{1}}{r}, 0)$$(0, \infty)$.

$z_{n}=(\frac{n\lambda_{1}}{r}, 0)$$z^{\ast}=(\infty, 0), $$z_{n}\rightarrow z^{\ast}.$因此引理3.4 (ⅰ)满足且$z^{\ast}=(\infty, 0).$显然

$\begin{equation} r_{n}=\sup\left\{\lambda+\|x\||(\lambda, x)\in \mathscr{C}^{[n]}\right\}=\infty. \end{equation}$

相应的, 引理3.4 (ⅱ)成立.由Arezela-Ascoli定理和$f^{[n]}$直接可得引理3.4 (ⅲ).因此由引理3.4可知$\limsup\limits_{n\rightarrow\infty}\mathscr{C}^{[n]}$包括一个无界连通分支$\mathscr{C}$满足$(\infty, 0)\in \mathscr{C}$并且$(0, \infty)\in \mathscr{C}$.

定理4.4    令(H1)-(H4) 和(H8) 成立.存在一个$\lambda^{+}>0$使得$r\in(0, \lambda^{+})$成立.则问题(1.1) 至少有一个正解.

    定义

${f^{[n]}}(s): = \left\{ {\begin{array}{*{20}{l}} {f(s),}&{s \in \left[ { - \infty , - \frac{2}{n}} \right] \cup \left[ {\frac{2}{n},\infty } \right],}\\ { - \left[ {f( - \frac{2}{n}) + 1} \right](ns + 2) + f\left( { - \frac{2}{n}} \right),}&{s \in \left( { - \frac{2}{n}, - \frac{1}{n}} \right),}\\ {\left[ {f\left( {\frac{2}{n}} \right) - 1} \right](ns - 2) + f\left( {\frac{2}{n}} \right),}&{s \in \left( {\frac{1}{n},\frac{2}{n}} \right),}\\ {ns,}&{s \in \left[ { - \frac{1}{n},\frac{1}{n}} \right].} \end{array}} \right.$

考虑问题

$\left\{ \begin{array}{l} {x^{(n)}}(t) + \lambda ra(t){f^{[n]}}(x) = 0,0 < t < 1,\\ x(0) = \int_0^1 {x(t)d\alpha (t)} ,{\mkern 1mu} {\mkern 1mu} x'(0) = \cdots = {x^{(n - 2)}}(0) = 0,{\mkern 1mu} {\mkern 1mu} x(1) = \int_0^1 {x(t)d\beta (t)} . \end{array} \right.$ (4.7)

显然,

$\mathop {\lim }\limits_{n \to + \infty } {f^{[n]}}(s) = f(s),{({f^{[n]}})_0} = n,{({f^{[n]}})_\infty } = {f_\infty } = \infty .$

相似于定理4.2的证明方法, 由引理4.1可知, 问题(4.7) 存在从$(\frac{\lambda_{1}}{nr},0)$发出的一个解的无界连通分支$\mathscr{C}^{[n]}$, 满足$\mathscr{C}^{[n]}\subset([0,\infty)\times E)$, 并且$\mathscr{C}^{[n]}$$[0,\infty)\times P$中连接$(\frac{\lambda_{1}}{nr},0)$$(\infty,\infty)$.

$z_{n}=(\frac{\lambda_{1}}{nr},0)$$z^{\ast}=(0,0),$$z_{n}\rightarrow z^{\ast}.$因此引理3.4(ⅰ)满足且$z^{\ast}=(0,0).$显然

$\begin{equation} r_{n}=\sup\left\{\lambda+\|x\||(\lambda,x)\in \mathscr{C}^{[n]}\right\}=\infty,\nonumber \end{equation}$

相应的, 引理3.4 (ⅱ)成立.由Arezela-Ascoli定理和$f^{[n]}$直接可得引理3.4 (ⅲ).因此由引理3.4可知$\limsup\limits_{n\rightarrow\infty}\mathscr{C}^{[n]}$包括一个无界连通分支$\mathscr{C}$满足$(0,0)\in \mathscr{C}$并且$(0,\infty)\in \mathscr{C}$.

参考文献
[1] Jiang Heping, Jiang Wei. The existence of a positive solution for nonlinear fractional functional differential equations[J]. J. Math., 2011, 31(3): 440–446.
[2] 郝兆才, 孔盟. 一类奇异泛函微分方程边值问题的多重正解[J]. 数学杂志, 2013, 33(1): 75–82.
[3] Ji Yuede, Guo Yanoing. The existence of countably many positive solutions for some nonlinear nth order m-point boundary value problems[J]. J. Comput. Appl. Math., 2009, 232(2): 187–200. DOI:10.1016/j.cam.2009.05.023
[4] Yang Jinbao, Wei Zhongli. Positive solutions of nth order m-point boundary value problem[J]. Appl. Math. Comput., 2008, 202(2): 715–720.
[5] Pang Changci, Wei Dong, Wei Zhongli. Green's function and positive solutions of nth order m-point boundary value problem[J]. Appl. Math. Comput., 2006, 182: 1231–1239.
[6] Graef J R, Yang Bo. positive solutions to a multi-point or nonlinear higher order boundary value problem[J]. J. Math. Anal. Appl., 2006, 316(2): 409–421. DOI:10.1016/j.jmaa.2005.04.049
[7] Webb J R L. Nonlocal conjugate type boundary value problem of higher order[J]. Nonl. Anal., 2009, 71(5-6): 1933–1940. DOI:10.1016/j.na.2009.01.033
[8] Shen Wenguo. Positive solutions to semipositone higher order singular nonlocal boundary value problems[J]. J. Lanzhou Univ. (Nat. Sci.), 2012, 48(2): 97–100.
[9] Dai Guowei, Ma Ruyun. Unilateral global bifurcation phenomena and nodal solutions for pLaplacian[J]. J. Diff. Equ., 2012, 252: 2448–2468. DOI:10.1016/j.jde.2011.09.026
[10] Dai Guowei. Bifurcation and nodal solutions for p-Laplacian problems with non-asymptotic nonlinearity at 0 or ∞[J]. Appl. Math. Lett., 2013, 26: 46–50. DOI:10.1016/j.aml.2012.03.030
[11] Dai Guowei, Ma Ruyun. Unilateral global bifurcation for p-Laplacian with non-p -1-linearization nonlinearity[J]. Disc. Contin. Dyn. Syst., 2015, 35(1): 99–116.
[12] Rynne B P. Infinitely many solutions of superlinear fourth order boundary value problems[J]. Topol. Meth. Nonl. Anal., 2002, 19(2): 303–312. DOI:10.12775/TMNA.2002.016
[13] Shen Wenguo. Global structure of nodal solutions for a fourth-order two-point boundary value problem[J]. Appl. Math. Comput., 2012, 219(1): 88–98.
[14] Ma Ruyun. Nodal solutions for a fourth-order two-order boundary value problem[J]. J. Math. Anal. Appl., 2006, 314(1): 254–265. DOI:10.1016/j.jmaa.2005.03.078
[15] Shi Junping, Wang Yuwen. On global bifurcation for quasilinear elliptic systems on bounded domains[J]. J. Diff. Equ., 2009, 246: 2788–2812. DOI:10.1016/j.jde.2008.09.009
[16] Shen Wenguo, He Tao. Global structure of positive solutions for a singular fourth-order integral boundary value problem[J]. Disc. Dyn. Nat. Soc. Vol. 2014, Article ID 614376, 7 pages.
[17] Ma Ruyun, An Yulian. Global structure of itive solutions for nonlocal boundary value problems involving integral conditions[J]. Nonl. Anal., 2009, 71(1): 4364–4376.
[18] Krasnosel'ii M A. Positive solutions of operator equations[M]. The Netherlands: P. Noordhoff Ltd., 1964.
[19] Zhang G, Sun J. Positive solutions of m-point boundary value problems[J]. J. Math. Anal. Appl., 2004, 291: 406–418. DOI:10.1016/j.jmaa.2003.11.034
[20] Guo D, Sun J. Nonlinear integral equations[M]. Ji'nan: Shandong Sci. Tech. Press, 1987.
[21] Whyburn G T. Topological analysis[M]. Princeton: Princeton University Press, 1958.
[22] Dancer E. Global solutions branches for positive maps[J]. Arch. Rat. Mech. Anal., 1974, 55: 207–213. DOI:10.1007/BF00281748
[23] Zeidler E. Nonlinear functional analysis and its applications[A]. Translated from the German by Peter R Wadsack. Fixed point theorems[C]. New York:Springer-Verlag, 1986.
[24] Ambrosetti A, Calahorrano R M, Dobarro F R. Global branching for discontinuous problems[J]. Comment. Math. Univ. Carolin., 1990, 31: 213–222.