数学杂志  2017, Vol. 37 Issue (5): 898-910   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WANG Yu-yu
WANG Jian-bo
ON A NEW NONTRIVIAL ELEMENT INVOLVING THE THIRD PERIODICITY γ-FAMILY IN π*S
WANG Yu-yu1, WANG Jian-bo2    
1. School of Mathematics and Science, Tianjin Normal University, Tianjin 300387, China;
2. Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, China
Abstract: In this paper, we discuss stable homotopy groups of spheres. By making a nontrivial secondary differential as geometric input in the Adams spectral sequence, the convergence of h0gn (n > 3) in π*S is given. Furthermore, by the knowledge of Yoneda products, a new nontrivial element in π*S is detected. The scale of the nontrivial elements is expanded by our results.
Key words: stable homotopy groups of spheres     Toda-Smith spectrum     Adams spectral sequence     May spectral sequence     Adams differential    
球面稳定同伦群中第三周期γ类非平凡新元素
王玉玉1, 王健波2    
1. 天津师范大学数学科学学院, 天津 300387;
2. 天津大学理学院数学系, 天津 300072
摘要:本文研究了球面稳定同伦群的问题.以Adams谱序列中的第二非平凡微分为几何输入,给出了球面稳定同伦群中h0gnn > 3)的收敛性.同时,由Yoneda乘积的知识,发掘了球面稳定同伦群中的一个非平凡新元素.非平凡元素的范围将被我们的结果进一步扩大.
关键词球面稳定同伦群    Toda-Smith谱    Adams谱序列    May谱序列    Adams微分    
1 Introduction

Let $S$ denote the sphere spectrum localized at $p$ and $p$ denote an odd prime. From [14], the homotopy group of $n$-dimensional sphere $\pi_{n+r}S^{n}$ $(r>0)$ is a finite group. So the determination of $\pi_{n+r}S^{n}$ has become one of the central problems in algebraic topology.

Ever since the introduction of the Adams spectral sequence (ASS) in the late 1950's (see [1]), the study of the homotopy groups of spheres $\pi_{\ast}S$ was split into algebraic and geometric problems, including the computation of ${\rm{Ext}}_A^{*, *}({\mathbb{Z}_p}, {\mathbb{Z}_p})$ and the detection which element of ${\rm{Ext}}_A^{*, *}({\mathbb{Z}_p}, {\mathbb{Z}_p})$ can survive to $E_{\infty}^{\ast, \ast}$, here $A$ is the mod $p$ Steenrod algebra, ${\rm{Ext}}_A^{*, *}({\mathbb{Z}_p}, {\mathbb{Z}_p})$ is the $E_{2}$-term of the ASS. By [2],

$E_2^{s, t}\cong{\rm{Ext}}_A^{s, t}({\mathbb{Z}_p}, {\mathbb{Z}_p})\Rightarrow\pi_{t-s}S, $

and the Adams differential is $d_{r}:E_{r}^{s, t}\mathop \to E_{r}^{s+r, t+r-1}$.

In addition, we also have the Adams-Novikov spectral sequence (ANSS) [12, 13] based on the Brown-Peterson spectrum BP in the determination of $\pi_{\ast}S$.

Many wonderful results were obtained, however, it is still far from the total determination of $\pi_{\ast}S$. After the detection of $\eta_{j}\in\pi_{p^{j}q+pq-2}S$ for $p=2$, $j\neq2$, by Mahowald in [11], which was represented by $h_{1}h_{j}\in{\rm{Ext}}_A^{2, p^{j}q+pq}({\mathbb{Z}_p}, {\mathbb{Z}_p})$, many nontrivial elements in $\pi_{\ast}S$ were found. Please see references [5-9] for details. In recent years, the first author established several convergence of elements by an arithmatic method, see [16-18, 21].

In [5], Cohen made the nontrivial secondary Adams differential $d_{2}(h_{i})=a_{0}b_{i-1}$ $(p>2, i>0)$ as geometric input, then, a nontrivial element $\xi_{i}\in\pi_{(p^{i+1}+1)q}S$ $(i\geqslant 0)$ is detected. In this paper, we also detect a new family in $\pi_{\ast}S$ by geometric method, the only geometric input used in the proof is the secondary nontrivial differential given in [20].

The main result is obtained as follows.

Theorem 1.1  Let $3\leqslant s< p-1$, $n>3$, $p\geqslant7$, then

$0\neq \widetilde{\gamma_{s}}h_{0}g_{n}\in {\rm{Ext}}_A^{s+3, {p^{n+1}}q+2{p^{n}}q+sp^{2}q+(s-1)pq+(s-1)q+s-3}(\mathbb{Z}_p, \mathbb{Z}_p) $

is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element of order $p$ in $\pi_{{p^{n+1}}q+2{p^{n}}q+sp^{2}q+(s-1)pq+(s-1)q-6} S$.

The paper is organized as follows. After giving some necessary preliminaries and useful knowledge about the MSS in Section 2. The proof of Theorem $1.1$ and some results on Ext groups will be given in Section 3.

2 Related Spectrum and the May Spectral Sequence

For the convenience of the reader, let us briefly indicate the necessary preliminaries in the proof of the propositions and theorems.

Let $M$ be the Moore spectrum modulo an odd prime $p$ given by the cofibration

${ S \xrightarrow{p} S \xrightarrow{i} M \xrightarrow{j} \Sigma S}. $

Let $\alpha$: $\sum^{q}M\rightarrow M$ be the Adams map and $V(1)$ be its cofibre given by the cofibration

${ \Sigma^{q}M\xrightarrow{\alpha } M \xrightarrow{{{i}^{\prime }}} V(1)\xrightarrow{{{j}^{\prime }}} \Sigma^{q+1} M.} $

Let $\beta$: $\sum^{(p+1)q}V(1)\rightarrow V(1)$ be the $\nu_2$-mapping and $V(2)$ be the cofibre of $\beta$ sitting in the cofibration

${ \Sigma^{(p+1)q}V(1)\xrightarrow{\beta } V(1) \xrightarrow{{{i}^{\prime \prime }}} V(2)\xrightarrow{{{j}^{\prime \prime }}} \Sigma^{(p+1)q+1} V(1).} $

Furthermore, $\gamma$: $\sum^{(p^{2}+p+1)q}V(2)\rightarrow V(2)$ is the $\nu_3$-mapping and the $\gamma$-element $\gamma_{s}=jj^{\prime}j^{\prime\prime}\gamma^{s}i^{\prime\prime}i^{\prime}i$ is a nontrivial element in $\pi_{sp^{2}q+(s-1)pq+(s-2)q-3}S$, where $p\geqslant7$ (see [15]).

From [19], we know that the third periodicity family $\gamma_{s}$ is represented by the third Greek letter family element

$\widetilde{\gamma}_{s}\in {\rm {Ext}}_{A}^{s, sp^{2}q+(s-1)pq+(s-2)q+s-3}(\mathbb{Z}_p, \mathbb{Z}_p)$

in the ASS, which is represented by the element

$s(s-1)(s-2)a_{3}^{s-3}h_{3, 0}h_{2, 1}h_{1, 2}$

in the May spectral sequence (MSS).

Let $L$ be the cofibre of $\alpha_{1}=j\alpha i$: $\sum^{q-1}S\rightarrow S$ given by the cofibration

${ \Sigma^{q-1}S\xrightarrow{{{\alpha }_{1}}} S \xrightarrow{{\bar{i}}} L\xrightarrow{{\bar{j}}} \Sigma^{q} S.} $

From [10], we can see that ${\rm{Ext}}_A^{1, \ast}(\mathbb{Z}_p, \mathbb{Z}_p)$ has $\mathbb{Z}_{p}$-bases

${{a}_{0}}\in \text{Ext}_{A}^{1, 1}({{\mathbb{Z}}_{p}}, {{\mathbb{Z}}_{p}}), {{h}_{i}}\in \text{Ext}_{A}^{1, {{p}^{i}}q}({{\mathbb{Z}}_{p}}, {{\mathbb{Z}}_{p}})(i\ge 0).$

${\rm{Ext}}_A^{2, \ast}(\mathbb{Z}_p, $ $\mathbb{Z}_p)$ has $\mathbb{Z}_p$-bases

$\alpha_{2}$, $a_0^2$, $a_{0}h_{i}$ $(i>0)$, $g_{i}$ $(i\geqslant0)$, $k_{i}$ $(i\geqslant0)$, $b_{i}$ $(i\geqslant0)$, and $h_{i}h_{j}$ $(j\geqslant{i+2}, i\geqslant0)$,

whose internal degrees are

$2q+1$, $2$, $p^{i}q+1$, $2p^{i}q+p^{i+1}q$, $2p^{i+1}+p^{i}q$, $p^{i+1}q$ and $p^{i}q+p^{j}q$,

respectively. Aikawa computed ${\rm{Ext}}_A^{3, \ast}(\mathbb{Z}_p, \mathbb{Z}_p)$ by $\lambda$-algebra in [3].

In the following, recall the Adams resolution of some spectra related to $S$ from [4]. Let

(2.1)

be the minimal Adams resolution of the sphere spectrum S which satisfles

(A) ${ E_{s} \xrightarrow{{{{\bar{b}}}_{s}}} KG_{s}\xrightarrow{{{{\bar{c}}}_{s}}} E_{s+1} \xrightarrow{{{{\bar{a}}}_{s}}} \Sigma E_{s} }$ are cofibrations for all $s\geqslant0$, which induce short exact sequences in $\mathbb{Z}_p$-cohomology

${ 0\xrightarrow{{}} H^{\ast}E_{s+1}\xrightarrow{\bar{c}_{s}^{*}} H^{\ast}KG_{s} \xrightarrow{\bar{b}_{s}^{*}} H^{\ast}E_{s}\xrightarrow{{}} 0.} $

(B) $KG_{s}$ are the graded wedge sums of Eilenberg-Maclane spectrum $K\mathbb{Z}_p$ of type $\mathbb{Z}_p$.

(C) $\pi_{t}KG_{s}$ are the $E_{1}^{s, t}$-terms of the ASS,

$(\overline{b}_{s}\overline{c}_{s-1})_{\ast}: \pi_{t}KG_{s-1}\longrightarrow \pi_{t}KG_{s}$

are the $d_{1}^{s-1, t}$-differentials of the ASS, and $\pi_{t}KG_{s} \cong \rm Ext_{A}^{s, t}(\mathbb{Z}_p, \mathbb{Z}_p)$. Then, an Adams resolution of an arbitrary spectrum $V$ can be obtained by smashing $V$ to (2.1).

Remark 2.1  In the ANSS, $h_{0}$ is a permanent cycle and converges to the corresponding homotopy element $i^{\prime}i\alpha_{1}$($\alpha_1=j\alpha i\in\pi_{q-1}S$) in $\pi_{q-1}K$. Furthermore, if some suppositions on Ext groups are given, then there exists $\overline{w}\in\pi_{p^{n+1}q+2p^{n}q-2}K$ such that $i^{\prime}i\xi=\alpha^{\prime\prime}\cdot\overline{w}$ (mod $F^{4}\pi_{\ast}K$) and $\overline{w}$ is represented by $(i^{'}i)_{\ast}(g_{n})\in{\rm {Ext}}_{A}^{2, p^{n+1}q+2p^{n}q}(H^{\ast}K, \mathbb{Z}_p)$ in the ASS, where $\xi\in\pi_{p^{n+1}q+2p^{n}q-4}S$ is the homotopy element which is represented by $h_{0}l_{n}\in {\rm {Ext}}_{A}^{4, p^{n+1}q+2p^{n}q+q}$ $(\mathbb{Z}_p, \mathbb{Z}_p)$ in the ASS and $F^{4}\pi_{\ast}K$ denotes the group consisting of all elements in $\pi_{\ast}K$ with filtration no less than 4.

To detect $\pi_{\ast}S$ with the ASS, we must compute the $E_{2}$-term of the ASS, ${\rm Ext}_{A}^{\ast, \ast}(\mathbb{Z}_p, \mathbb{Z}_p)$. The most successful method for computing it is the MSS.

From [13], there is a MSS $\left\{ E_{r}^{s, t, *}, {{d}_{r}} \right\}$, which converges to ${\rm Ext}_{A}^{s, t}(\mathbb{Z}_p, \mathbb{Z}_p)$ with $E_{1}$-term

$E_1^{\ast, \ast, \ast}=E(h_{i, j}\mid i>0, j\geqslant0)\otimes P(b_{i, j}\mid i>0, j\geqslant0)\otimes P(a_{i}\mid i\geqslant0), $ (2.2)

where $E( )$ denotes the exterior algebra, $P( )$ denotes the polynomial algebra, and

$h_{i, j}\in E_1^{1, 2(p^{i}-1)p^{j}, 2i-1}, b_{i, j}\in E_1^{2, 2(p^{i}-1)p^{j+1}, p(2i-1)}, a_{i}\in E_1^{1, 2p^{i}-1, 2i+1}. $

One has $d_{r}$: $E_r^{s, t, M}\rightarrow E_r^{s+1, t, M-r}$ $(r\geqslant1)$. If $x\in E_r^{s, t, \ast}$ and $y\in E_r^{s', t', \ast}$, then

$d_{r}(x\cdot y)=d_{r}(x)y+(-1)^{s}xd_{r}(y).$ (2.3)

Furthermore, the May $E_{1}$-term is graded commutative in the sense that

$\begin{align} & {{a}_{m}}{{h}_{n, j}}={{h}_{n, j}}{{a}_{m}}, {{h}_{m, k}}{{h}_{n, j}}=-{{h}_{n, j}}{{h}_{m, k}}, \\ & {{a}_{m}}{{b}_{n, j}}={{b}_{n, j}}{{a}_{m}}, \quad {{h}_{m, k}}{{b}_{n, j}}={{b}_{n, j}}{{h}_{m, k}}, \\ & {{a}_{m}}{{a}_{n}}={{a}_{n}}{{a}_{m}}, \quad \quad {{b}_{m, n}}{{b}_{i, j}}={{b}_{i, j}}{{b}_{m, n}}. \\ \end{align}$

The first May differential $d_{1}$ is given by

$\left\{\begin{array}{l} d_{1}(h_{i, j})=-\sum \limits_{0<k<i}h_{i-k, k+j}h_{k, j}, \\ d_{1}(a_{i})=-\sum \limits_{0<k<i}h_{i-k, k}, a_{k}, \\ d_{1}(b_{i, j})=0. \end{array} \right.$ (2.4)

For each element $x\in E_{1}^{s, t, \ast}$, if we denote dim $x=s$, deg $x=t$, we have

$\left\{\begin{array}{l} \dim h_{i, j}=\dim a_{i}=1, \dim b_{i, j}=2, \\ \deg h_{i, j}=2(p^{i}-1)p^{j}=(p^{i+j-1}+\cdots+p^{j})q, \\ \deg b_{i, j}=2(p^{i}-1)p^{j+1}=(p^{i+j}+\cdots+p^{j+1})q, \\ \deg a_{i}=2p^{i}-1=(p^{i-1}+\cdots+1)q+1, \\ \deg a_{0}=1. \end{array} \right.$ (2.5)

Remark 2.2  Any positive integer $t$ can be expressed uniquely as $t=q(c_{n}p^{n}+c_{n-1}p^{n-1}+\cdots+ c_{1}p+c_{0})+e, $ where $0\leqslant c_{i}<p (0\leqslant i <n)$, $0<c_{n}<p$, $0\leqslant e< q$.

Then, it is easy to get the following result from [16].

Proposition 2.3   In the MSS, we have $E_{1}^{s, t, \ast}=0$ for some $j$ $(0\leqslant j\leqslant n)$, $s<c_{j}$, where $s$ is also a positive integer with $0<s<p$.

3 Some Adams $E_{2}$-Terms

In this section, we mainly give some important results about Adams $E_{2}$-terms. At the end, the proof of Theorem $1.1$ will be given.

Proposition 3.1   Let $3\leqslant s<p-1, n>3, p\geqslant7$, then

$0\neq \widetilde{\gamma}_{s}h_{0}g_{n}\in {\rm{Ext}}_A^{s+3, {p^{n+1}}q+2{p^{n}}q+sp^{2}q+(s-1)pq+(s-1)q+s-3}(\mathbb{Z}_p, \mathbb{Z}_p). $

Proof  Consider the structure of $E_1^{s+2, t, \ast}$ in the MSS, where $t=p^{n+1}q+2p^{n}q+sp^{2}q+(s-1)pq+(s-1)q+s-3$. Due to $3\leqslant s<p-1$, then $5\leqslant s+2<p+1$.

Case 1  $5\leqslant s+2<p$. Let $h=x_{1}x_{2}\cdots x_{m}$ be the generator of $E_1^{s+2, t, \ast}$, where $x_{i}$ is one of $a_{k}$, $h_{i, j}$ or $b_{u, z}$, $0\leqslant k\leqslant n+2$, $0< i+j\leqslant n+2$, $0< u+z\leqslant n+1$, $i>0$, $j\geqslant 0$, $u>0$, $z\geqslant 0$.

Assume that $\deg x_{i}=q(c_{i, n+1}p^{n+1}+\cdots+c_{i, 1}p+c_{i, 0})+e_{i}, $ where $c_{i, j}=0$ or 1, $e_{i}=1$ if $x_{i}=a_k$ or $e_{i}=0$, then

$\deg h =\sum\limits_{i=1}^{m}\deg x_{i} =q((\sum\limits_{i=1}^{m}c_{i, n+1})p^{n+1}+(\sum\limits_{i=1}^{m}c_{i, n})p^{n}+\cdot \cdot\cdot+(\sum\limits_{i=1}^{m}c_{i, 0}))+(\sum\limits_{i=1}^{m}e_{i})\\ \quad \quad =q(p^{n+1}+2p^{n}+sp^{2}+(s-1)p+(s-1))+s-3, \\ \dim h =\sum\limits_{i=1}^{m}\dim x_{i}=s+2. $

Note that $\dim x_{i}=1$ or 2, we can see that $m\leqslant s+2<p$ from $\sum\limits_{i=1}^{m}\dim x_{i}=s+2$. By the fact that $c_{i, j}=0$ or 1, $e_i=0$ or 1, $m\leqslant s+2<p$, we have

$ \sum\limits_{i=1}^{m}e_{i}=s-3, \sum\limits_{i=1}^{m}c_{i, 0}=s-1, \sum\limits_{i=1}^{m}c_{i, 1}=s-1, \sum\limits_{i=1}^{m}c_{i, 2}=s, \\ \sum\limits_{i=1}^{m}c_{i, 3}=\cdots=\sum\limits_{i=1}^{m}c_{i, n-1}=0, \sum\limits_{i=1}^{m}c_{i, n}=2, \sum\limits_{i=1}^{m}c_{i, n+1}=1. $

From the above results, we can see that $b_{1, n}b_{1, n-1}h_{1, n}$, $h_{2, n}h_{1, n}$, $h_{2, n}b_{1, n-1}$, $b_{2, n-1}h_{1, n}$, $b_{1, n-1}b_{2, n-1}$, $b_{1, n}b_{1, n-1}^{2}$, $h_{1, n+1}b_{1, n-1}^{2}$ and $h_{1, n+1}b_{1, n-1}h_{1, n}$ are contained in the $x_{i}$. By the commutativity of $E_1^{\ast, \ast, \ast}$, we can denote

$\begin{array}{l} {h_1} = {x_1}{x_2} \cdots {x_{m - 3}}{b_{1, n}}{h_{1, n}}{b_{1, n - 1}}, \quad h_1^\prime = {x_1}{x_2} \cdots {x_{m - 3}} \in E_1^{s - 3, {t^\prime }, * };\\ {h_2} = {x_1}{x_2} \cdots {x_{m - 3}}{b_{1, n}}b_{1, n - 1}^2, \quad \quad h_2^\prime = {x_1}{x_2} \cdots {x_{m - 3}} \in E_1^{s - 4, {t^\prime }, * };\\ {h_3} = {x_1}{x_2} \cdots {x_{m - 3}}{h_{1, n + 1}}b_{1, n - 1}^2, \quad \;\;h_3^\prime = {x_1}{x_2} \cdots {x_{m - 3}} \in E_1^{s - 3, {t^\prime }, * };\\ {h_4} = {x_1}{x_2} \cdots {x_{m - 2}}{h_{2, n}}{h_{1, n}}, \quad \quad \;\;h_4^\prime = {x_1}{x_2} \cdots {x_{m - 2}} \in E_1^{s, {t^\prime }, * };\\ {h_5} = {x_1}{x_2} \cdots {x_{m - 2}}{h_{2, n}}{b_{1, n - 1}}, \quad \quad \;h_5^\prime = {x_1}{x_2} \cdots {x_{m - 2}} \in E_1^{s - 1, {t^\prime }, * };\\ {h_6} = {x_1}{x_2} \cdots {x_{m - 2}}{b_{2, n - 1}}{h_{1, n}}, \quad \quad \;h_6^\prime = {x_1}{x_2} \cdots {x_{m - 2}} \in E_1^{s - 1, {t^\prime }, * };\\ {h_7} = {x_1}{x_2} \cdots {x_{m - 2}}{b_{2, n - 1}}{b_{1, n - 1}}, \quad \;\;h_7^\prime = {x_1}{x_2} \cdots {x_{m - 2}} \in E_1^{s - 2, {t^\prime }, * };\\ {h_8} = {x_1}{x_2} \cdots {x_{m - 3}}{h_{1, n + 1}}{h_{1, n}}{b_{1, n - 1}}, \quad h_8^\prime = {x_1}{x_2} \cdots {x_{m - 3}} \in E_1^{s - 2, {t^\prime }, * }, \end{array}$

where $t^\prime=sp^{2}q+(s-1)pq+(s-1)q+s-3$.

We list all the possibilities of $h_{i}^{\prime}$ in the following table $(i=1, 2, \cdots, 8)$, thus $h$ doesn't exist in this case.

Table 1
the possibilities of $h_{i}^{\prime}$

Case 2 If $ s+2=p$, then $E_1^{s+2, t^{\prime\prime}, \ast}=E_1^{p, t^{\prime\prime}, \ast}$, where $t^{\prime\prime}=p^{n+1}q+2p^{n}q+(p-2)p^{2}q+(p-3)pq+(p-3)q+p-5$. Let $h=x_{1}x_{2}\cdots x_{r}$ be the generator of $E_1^{p, t^{\prime\prime}, \ast}$, and assume that

$\deg x_{i}=q(c_{i, n+1}p^{n+1}+c_{i, n}p^{n}+\cdots+c_{i, 1}p+c_{i, 0})+e_{i}, $

where $c_{i, j}=0$ or 1, $e_{i}=1$ if $x_{i}=a_{k_{i}}$ or $e_{i}=0$, then

$\deg h =\sum\limits_{i=1}^{r}\deg x_{i} =q((\sum\limits_{i=1}^{r}c_{i, n+1})p^{n+1}+(\sum\limits_{i=1}^{r}c_{i, n})p^{n}+\cdots +(\sum\limits_{i=1}^{r}c_{i, 0}))+(\sum\limits_{i=1}^{r}e_{i})\\ \quad \quad =q(p^{n+1}+2p^{n}+(p-2)p^{2}+(p-3)p+(p-3))+p-5, \\ \dim h =\sum\limits_{i=1}^{r}\dim x_{i}=p. $

We claim that $\sum\limits_{i=1}^{r}c_{i, 0}$, $\sum\limits_{i=1}^{r}c_{i, 1}$ and $\sum\limits_{i=1}^{r}c_{i, 2}$ are impossible to constitute $p$. The reason is the following: if $\sum\limits_{i=1}^{r}c_{i, 0}=p$, because of $\sum\limits_{i=1}^{r}e_{i}=p-5$, then

$q\Big((\sum\limits_{i=1}^{r}c_{i, n+1})p^{n+1}+(\sum\limits_{i=1}^{r}c_{i, n})p^{n}+\cdot \cdot\cdot+(\sum\limits_{i=1}^{r}c_{i, 0})\Big)+(\sum\limits_{i=1}^{r}e_{i})= \sum\limits_{i=1}^{r}e_{i} ({\rm{mod}} p), $

this contradicts to $q(p^{n+1}+2p^{n}+(p-2)p^{2}+(p-3)p+(p-3))+p-5=(p-3)q+p-5 ({\rm{mod}} p)$. For the same reason, $\sum\limits_{i=1}^{r}c_{i, 1}$ and $\sum\limits_{i=1}^{r}c_{i, 2}$ are impossible to constitute $p$.

From $\dim x_{i}=1$ or 2 and $\sum\limits_{i=1}^{r}\dim x_{i}=p$, we can see that $r\leqslant p$. By Remark 2.2 and $r\leqslant p$, $c_{i, j}=0$ or 1, $e_i=0$ or 1, we have

$\sum\limits_{i=1}^{r}e_{i}=p-5, \sum\limits_{i=1}^{r}c_{i, 0}=p-3, \sum\limits_{i=1}^{r}c_{i, 1}=p-3, \sum\limits_{i=1}^{r}c_{i, 2}=p-2, \nonumber\\ (\sum\limits_{i=1}^{r}c_{i, 3})p^{3}+\cdots+(\sum\limits_{i=1}^{r}c_{i, n})p^{n}+ (\sum\limits_{i=1}^{r}c_{i, n+1})p^{n+1}=p^{n+1}+2p^{n}, $ (3.1)

so

$(\sum\limits_{i=1}^{r}c_{i, 3})+\cdots+(\sum\limits_{i=1}^{r}c_{i, n})p^{n-3}+ (\sum\limits_{i=1}^{r}c_{i, n+1})p^{n-2}=p^{n-2}+2p^{n-3}. $ (3.2)

Thus $p\mid \sum\limits_{i=1}^{r}c_{i, 3}$. Note that $c_{i, 3}=0$ or 1, $r\leqslant p$, it is known that $\sum\limits_{i=1}^{r}c_{i, 3}=0$ or $p$.

Case 2.1 When $\sum\limits_{i=1}^{r}c_{i, 3}=0$, we have

$(\sum\limits_{i=1}^{r}c_{i, 4})p+\cdots+(\sum\limits_{i=1}^{r}c_{i, n})p^{n-3}+ (\sum\limits_{i=1}^{r}c_{i, n+1})p^{n-2}=p^{n-2}+2p^{n-3}. $

Case 2.1.1  When $n>4$, we claim that $\sum\limits_{i=1}^{r}c_{i, 4}=0$. Otherwise, if $\sum\limits_{i=1}^{r}c_{i, 4}=p$, then $r=p$. So $\dim x_{i}=1(1\leqslant i\leqslant p)$ and $\deg x_{i}= (\textrm {higher terms}) +p^{4}q+(\textrm {lower terms})$. Because of $\sum\limits_{i=1}^{r}e_{i}=p-5$, $\deg a_{k}\equiv1({\rm mod} q)$, $\dim h_{l, j}\equiv0({\rm mod} q)$ and $\dim b_{u, z}\equiv0({\rm mod} q)$, there exist factors $a_{j_{1}}a_{j_{2}}\cdots a_{j_{p-5}}$ among the generators $x_{i} ( j_{i}\geqslant 5, 1\leqslant i\leqslant p-5)$. Thus, $\sum\limits_{i=1}^{r}c_{i, 3}\geqslant p-5$, which contradicts to $\sum\limits_{i=1}^{r}c_{i, 3}=0$, so $\sum\limits_{i=1}^{r}c_{i, 4}=0$. By induction on $j$, we can get $\sum\limits_{i=1}^{r}c_{i, j}=0 (5\leqslant j\leqslant n-1)$, $\sum\limits_{i=1}^{r}c_{i, n}=2$, $\sum\limits_{i=1}^{r}c_{i, n+1}=1$.

Case 2.1.2  When $n=4$, it is easy to get $\sum\limits_{i=1}^{r}c_{i, 4}=2$ and $\sum\limits_{i=1}^{r}c_{i, 5}=1$.

From the above discussion of Case 2.1.1 and Case 2.1.2, similarly to Case 1, we can see that $b_{1, n}b_{1, n-1}h_{1, n}$, $h_{2, n}h_{1, n}$, $h_{2, n}b_{1, n-1}$, $ b_{2, n-1}h_{1, n}$, $b_{1, n-1}b_{2, n-1}$, $b_{1, n}b_{1, n-1}^{2}, $ $h_{1, n}b_{1, n-1}h_{1, n+1}$ and $h_{1, n+1}b_{1, n-1}^{2} $ are contained in the $x_{i}$, so $h$ is impossible to exist.

Case 2.2  When $\sum\limits_{i=1}^{r}c_{i, 3}=p$, then $r=p$. We get ${\rm dim} x_{i}=1$ from ${\rm dim} h=p$, then $h=x_{1}x_{2}\cdots x_{p}$, $x_{i}\in E(h_{i, j}\mid i>0, j\geqslant 0)\otimes P(a_{k}\mid k\geqslant0)$.

Case 2.2.1  When $n>4$, we get

$p\cdot p^{3}+(\sum\limits_{i=1}^{r}c_{i, 4})p^{4}+\cdots+(\sum\limits_{i=1}^{r}c_{i, n})p^{n}+ (\sum\limits_{i=1}^{r}c_{i, n+1})p^{n+1}=p^{n+1}+2p^{n}, $

that is $(1 + \sum\limits_{i = 1}^r {{c_{i,4}}} ) + (\sum\limits_{i = 1}^r {{c_{i,5}}} )p + \cdots + (\sum\limits_{i = 1}^r {{c_{i,n + 1}}} ){p^{n - 3}} = {p^{n - 3}} + 2{p^{n - 4}},$ thus $p\mid(1+\sum\limits_{i=1}^{r}c_{i, 4})$, so $\sum\limits_{i=1}^{r}c_{i, 4}=p-1$ from $c_{i, 4}=0$ or 1 and $r=p$. By induction on $j$, we can get

$\sum\limits_{i=1}^{r}c_{i, j}=p-1(4\leqslant j\leqslant n-1), \sum\limits_{i=1}^{r}c_{i, n}=1, \sum\limits_{i=1}^{r}c_{i, n+1}=1. $

By the reason of degree and the Proposition 2.3, $h$ is impossible to exist.

Case 2.2.2  When $n=4$, we know that $\sum\limits_{i=1}^{r}c_{i, 4}=1$, $\sum\limits_{i=1}^{r}c_{i, 5}=1$ from (3.2), then

$\deg h=q(p^{5}+2p^{4}+(p-2)p^{2}+(p-3)p+p-3)+(p-5). $

By the reason of degree and the Proposition 2.3, $h$ is impossible to exist.

From the above discussion, for $5\leqslant s+2<p+1$, $E_1^{s+2, t, *}=0$, so $E_r^{s+2, t, *}=0 (r\geqslant 2)$. It is known that $h_{2, n}h_{1, n}$, $h_{1, n}, a_3^{s-3}h_{3, 0}h_{2, 1}h_{1, 2}\in E_1^{\ast, \ast, \ast}$ are permanent cycles in the MSS and converge nontrivially to $g_{n}$, $h_{n}$, $\widetilde{\gamma}_{s}\in{\rm{Ext}}_A^{\ast, \ast}(\mathbb{Z}_p, \mathbb{Z}_p) (n\geqslant0)$, respectively, so $a_3^{s-3}h_{3, 0}h_{2, 1}h_{1, 2}h_{1, n}h_{2, n}h_{1, 0}\in E_1^{s+3, t, \ast}$ is a permanent cycle in the MSS and converges nontrivially to $\widetilde{\gamma}_{s}h_{0}g_{n}\in{\rm{Ext}}_A^{s+3, t}(\mathbb{Z}_p, \mathbb{Z}_p)$. Note that $E_r^{s+2, t, \ast}=0 (r\geqslant1)$, thus the permanent cycle is not $d_{r}$-boundary and converges nontrivially to $\widetilde{\gamma}_{s}h_{0}g_{n}\in{\rm{Ext}}_A^{s+3, t}(\mathbb{Z}_p, \mathbb{Z}_p)$, that is, when $5\leqslant s+2<p+1$, $0\neq \widetilde{\gamma_{s}}h_{0}g_{n}\in{\rm{Ext}}_A^{s+3, t}(\mathbb{Z}_p, \mathbb{Z}_p)$.

Proposition 3.2  Let $3\leqslant s<p-1, n>3, p\geqslant7$, $2\leqslant r< s+3$, then

${\rm{Ext}}_A^{s+3-r, {p^{n+1}}q+2{p^{n}}q+sp^{2}q+(s-1)pq+(s-1)q+s-r-2}(\mathbb{Z}_p, \mathbb{Z}_p)=0. $

Proof  We only need to prove that $E_1^{s+3-r, t, \ast}=0$ in the MSS, where $t=p^{n+1}q+2{p^{n}}q+sp^{2}q+(s-1)pq+(s-1)q+s-r-2$. Let $h=x_{1}x_{2}\cdots x_{m}$ be the generator of $E_1^{s+3-r, t, \ast}$, where $x_{i}$ is $a_{k}$, $h_{i, j}$ or $b_{u, z}$, $0\leqslant k\leqslant n+2$, $0< i+j\leqslant n+2$, $0< u+z\leqslant n+1$, $i>0$, $j\geqslant 0$, $u>0$, $z\geqslant 0$.

Assume that $\deg x_{i}=q(c_{i, n+1}p^{n+1}+c_{i, n}p^{n}+\cdots+c_{i, 0})+e_{i}$, where $c_{i, j}=0$ or 1, $e_{i}=1$ if $x_{i}=a_{k_{i}}$ or $e_{i}=0$, then

$\deg h =\sum\limits_{i=1}^{m}\deg x_{i} =q((\sum\limits_{i=1}^{m}c_{i, n+1})p^{n+1}+(\sum\limits_{i=1}^{m}c_{i, n})p^{n}+\cdots+ (\sum\limits_{i=1}^{m}c_{i, 0}))+(\sum\limits_{i=1}^{m}e_{i})\\ \quad \quad =q(p^{n+1}+2p^{n}+sp^{2}+(s-1)p+(s-1))+s-r-2, \\ \dim h =\sum\limits_{i=1}^{m}\dim x_{i}=s+3-r. $

Note that $\dim x_{i}=1$ or 2, we can see that $m\leqslant s+3-r\leqslant s+1<p$. We claim that $s-r-2\geqslant0$, otherwise, $p>\sum\limits_{i=1}^{m}e_{i}=q+(s-r-2)\geqslant q-5>p$. Because of $c_{i, j}=0$ or 1, $e_i=0$ or 1 and $r<p$, we have

$ \sum\limits_{i=1}^{m}e_{i}=s-r-2, \sum\limits_{i=1}^{m}c_{i, 0}=s-1, \sum\limits_{i=1}^{m}c_{i, 1}=s-1, \sum\limits_{i=1}^{m}c_{i, 2}=s, \\ \sum\limits_{i=1}^{m}c_{i, 3}=\cdots=\sum\limits_{i=1}^{m}c_{i, n-1}=0, \sum\limits_{i=1}^{m}c_{i, n}=2, \sum\limits_{i=1}^{m}c_{i, n+1}=1. $

From the above results, we can see that $b_{1, n}b_{1, n-1}h_{1, n}$, $h_{2, n}h_{1, n}$, $h_{2, n}b_{1, n-1}$, $ b_{2, n-1}h_{1, n}$, $b_{1, n-1}b_{2, n-1}$, $b_{1, n}b_{1, n-1}^{2}, $ $h_{1, n}b_{1, n-1}h_{1, n+1}$ and $h_{1, n+1}b_{1, n-1}^{2}$ are contained in the $x_{i}$. By the commutativity of $E_1^{\ast, \ast, \ast}$, we can denote

$\begin{array}{l} {h_1} = {x_1}{x_2} \cdots {x_{m - 3}}{b_{1, n}}{h_{1, n}}{b_{1, n - 1}}, \quad \quad h_1^\prime = {x_1}{x_2} \cdots {x_{m - 3}} \in E_1^{s - 2 - r, t(r), * };\\ {h_2} = {x_1}{x_2} \cdots {x_{m - 3}}{b_{1, n}}b_{1, n - 1}^2, \quad \quad \quad h_2^\prime = {x_1}{x_2} \cdots {x_{m - 3}} \in E_1^{s - 3 - r, t(r), * };\\ {h_3} = {x_1}{x_2} \cdots {x_{m - 3}}{h_{1, n + 1}}b_{1, n - 1}^2, \quad \quad \;\;h_3^\prime = {x_1}{x_2} \cdots {x_{m - 3}} \in E_1^{s - 2 - r, t(r), * };\\ {h_4} = {x_1}{x_2} \cdots {x_{m - 2}}{h_{2, n}}{h_{1, n}}, \quad \quad \;\;\;\;\;h_4^\prime = {x_1}{x_2} \cdots {x_{m - 2}} \in E_1^{s + 1 - r, t(r), * };\\ {h_5} = {x_1}{x_2} \cdots {x_{m - 2}}{h_{2, n}}{b_{1, n - 1}}, \quad \quad \;\;\;h_5^\prime = {x_1}{x_2} \cdots {x_{m - 2}} \in E_1^{s - r, t(r), * };\\ {h_6} = {x_1}{x_2} \cdots {x_{m - 2}}{b_{2, n - 1}}{h_{1, n}}, \quad \quad \;\;\;h_6^\prime = {x_1}{x_2} \cdots {x_{m - 2}} \in E_1^{s - r, t(r), * };\\ {h_7} = {x_1}{x_2} \cdots {x_{m - 2}}{b_{2, n - 1}}{b_{1, n - 1}}, \quad \quad \;h_7^\prime = {x_1}{x_2} \cdots {x_{m - 2}} \in E_1^{s - 1 - r, t(r), * };\\ {h_8} = {x_1}{x_2} \cdots {x_{m - 3}}{h_{1, n + 1}}{h_{1, n}}{b_{1, n - 1}}, \quad \;h_8^\prime = {x_1}{x_2} \cdots {x_{m - 3}} \in E_1^{s - 1 - r, t(r), * }, \end{array}$

where $t(r)=sp^{2}q+(s-1)pq+(s-1)q+s-2-r$.

For $h_{1}^{\prime}$, $s-2-r< \sum\limits_{i=1}^{m-3}c_{i, 2}=s$, by Proposition $2.3$, we get that $h_{1}^\prime$ is impossible to exist. For the same reason, $h_{i}^\prime (i=2, 3, \cdots 8)$ are impossible to exist. So we have $E_1^{s+3-r, t, \ast}=0, $ that is ${\rm{Ext}}_A^{s+3-r, t}(\mathbb{Z}_p, \mathbb{Z}_p)=0$.

Proposition 3.3  Let $p\geqslant7$, $tq=p^{n+1}q+2p^{n}q$, $n>3$, then

(1)

${\rm{Ext}}_A^{4, {tq+rq+u}}(\mathbb{Z}_p, \mathbb{Z}_p)=0 (r=2, 3, 4, u=-1, 0 {\rm or} r=3, 4, u=1);\\ {\rm{Ext}}_A^{4, {tq+q}}(\mathbb{Z}_p, \mathbb{Z}_p)\cong\mathbb{Z}_p\{h_{0}l_{n}\}; {\rm{Ext}}_A^{4, {tq}}(\mathbb{Z}_p, \mathbb{Z}_p)=0;\\ {\rm{Ext}}_A^{4, {tq+2q+1}}(\mathbb{Z}_p, \mathbb{Z}_p)\cong\mathbb{Z}_p\{\tilde\alpha_2g_n\}, a_0^2g_n\neq 0.$

(2)

${\rm{Ext}}_A^{5, {tq+rq+1}}(\mathbb{Z}_p, \mathbb{Z}_p)=0 (r=1, 3, 4); {\rm{Ext}}_A^{5, {tq+rq}}(\mathbb{Z}_p, \mathbb{Z}_p)=0 (r=2, 3);\\ {\rm{Ext}}_A^{5, {tq+2q+1}}(\mathbb{Z}_p, \mathbb{Z}_p)\cong\mathbb{Z}_p\{\tilde\alpha_2\}; {\rm{Ext}}_A^{5, {tq+2}}(\mathbb{Z}_p, \mathbb{Z}_p)\cong\mathbb{Z}_p\{a_{0}^{2}l_{n}\};\\ {\rm{Ext}}_A^{5, {tq+1}}(\mathbb{Z}_p, \mathbb{Z}_p)=0.$

Proof  (1) Consider the second degrees $({\rm{mod}} p^{n+1}q)$ of the generators in the $E_{1}$-terms of the MSS, where $0\leqslant j\leqslant n+1$,

${\rm{deg}} h_{s, j} =(p^{s+j-1}+\cdots+p^{j})q ({\rm{mod}} p^{n+1}q), 0\leqslant j<s+j-1<n+1, \\ \quad \quad \quad =(p^{n}+\cdots+p^{j})q ({\rm{mod}} p^{n+1}q), 0\leqslant j<s+j-1=n+1;\\ {\rm{deg}} b_{s, j-1} =(p^{s+j-1}+\cdots+p^{j})q ({\rm{mod}} p^{n+1}q), 1\leqslant j<s+j-1<n+1, \\ \quad \quad \quad =(p^{n}+\cdots+p^{j})q ({\rm{mod}} p^{n+1}q), 1\leqslant j<s+j-1=n+1;\\ {\rm{deg}} a_{j+1} =(p^{j}+\cdots+1)q+1 ({\rm{mod}} p^{n+1}q), 0\leqslant j<n+1, \\ \quad \quad \quad =(p^{n}+\cdots+1)q+1 ({\rm{mod}} p^{n+1}q), j=n+1.$

For the second degree $k=tq+rq+u (0\leqslant r\leqslant 4, -1\leqslant u\leqslant2)=2p^{n}q+rq+u ({\rm{mod}} p^{n+1}q)$, and excluding the factor which has second degree $\geqslant tq+pq$, we can get that the possibility of the factor of the generators in $E_{1}^{w, tq+rq+u, \ast}$ $ (4\leqslant w\leqslant 5)$ are $a_{0}, a_{1}, h_{1, 0}, h_{1, n+1}, h_{1, n}, h_{2, n}, $ $b_{1, n}, $ $b_{1, n-1}$ and $b_{2, n-1}$. Thus from the degree we know that

$E_1^{4, {tq+rq+u, \ast}}=0 (r=3, 4, u=1);\\ E_1^{4, {tq+rq+u, \ast}}=0 (r=2, 3, 4, u=-1, 0);\\ E_1^{4, {tq, \ast}}\cong\mathbb{Z}_p\{b_{1, n-1}b_{2, n-1}\};\\ E_1^{4, {tq+q, \ast}}\cong\mathbb{Z}_p\{h_{1, 0}h_{1, n}b_{2, n-1}, h_{2, n}b_{1, n-1}h_{1, 0}\};\\ E_1^{4, {tq+2q+1, \ast}}\cong\mathbb{Z}_p\{a_{1}h_{1, 0}h_{1, n}h_{2, n}\}.$

In the MSS, note that $d_{r}(xy)=d_{r}(x)y+(-1)^{s}xd_{r}(y)$ $(x\in E_1^{s, t, \ast}, y\in E_1^{s^\prime, t^\prime, \ast})$. Since $d_{1}(b_{1, n-1}h_{2, n}h_{1, 0})\neq 0$, then $E_{r}^{4, tq+q}=\mathbb{Z}_p\{b_{2, n-1}h_{1, n}h_{1, 0}\}$ $(r\geqslant 2)$. Moreover, $h_{2, n}h_{1, n}h_{1, 0}$ is permanent cycle in the MSS which converges to $h_{0}g_{n}\in{\rm{Ext}}_A^{3, \ast}(\mathbb{Z}_p, \mathbb{Z}_p)$, then $d_{r}(E_{r}^{3, tq+q, \ast})=0$ for $r\geqslant 1$, so that $b_{2, n-1}h_{1, n}h_{1, 0}$ is not $d_{r}$-boundary and it converges nontrivially to $h_{0}l_{n}$.

In addition, we say that ${\rm{Ext}}_A^{4, {tq}}(\mathbb{Z}_p, \mathbb{Z}_p)=0$, since $E_1^{4, tq, \ast}\cong\mathbb{Z}_p\{b_{1, n-1}$ $b_{2, n-1}\}$, where $b_{1, n-1}$ converges to $b_{n-1}$, while in the ${\rm{Ext}}_A^{2, {\ast}}(\mathbb{Z}_p, \mathbb{Z}_p)$, there is no element in relation to $b_{2, n-1}\in E_1^{2, p^{_n+1}q+p^{n}q, \ast}$.

(2) Similarly, due to the reason of the degree, we can get the following results

$E_1^{5, {tq+q+1, \ast}}\cong\mathbb{Z}_p\{a_{1}b_{1, n-1}b_{2, n-1}, a_{0}h_{1, 0}h_{2, n}b_{1, n-1}, a_{0}h_{1, 0}b_{2, n-1}h_{1, n}\};\\ E_1^{5, {tq+rq+1, \ast}}=0 (r=3, 4);\\ E_1^{5, {tq+rq, \ast}}=0 (r=2, 3);\\ E_1^{5, {tq+2q+1, \ast}}\cong\mathbb{Z}_p\{a_{1}h_{1, 0}b_{2, n-1}h_{1, n}, h_{2, n}b_{1, n-1}h_{1, 0}a_{1}\};\\ E_1^{5, {tq+2, \ast}}\cong\mathbb{Z}_p\{a_0^{2}h_{1, n}b_{2, n-1}, a_{0}^{2}h_{2, n}b_{1, n-1}\};\\ E_1^{5, {tq+1, \ast}}\cong\mathbb{Z}_p\{a_{0}b_{1, n-1}b_{2, n-1}, a_{0}h_{1, n-1}h_{1, n}h_{1, n+1}\}.$

The generators of $E_1^{5, {tq+q+1, \ast}}$ in the MSS all die, this is because that

$d_{1}(a_{1}b_{1, n-1}b_{2, n-1}) =-a_{0}h_{1, 0}b_{1, n-1}b_{2, n-1}\neq 0, \\ a_{0}h_{1, 0}h_{2, n}b_{1, n-1} =-d_{1}(a_{1} h_{2, n}b_{1, n-1}) $

and

$a_{0}h_{1, 0}b_{2, n-1}h_{1, n}=-d_{1}(a_{1}h_{2, n-1}h_{1, n}). $

So we have ${\rm{Ext}}_A^{5, {tq+q+1}}(\mathbb{Z}_p, \mathbb{Z}_p)=0$. In addition, with a similar proof of (1), we know that $d_{r}E_r^{4, tq+2, \ast}=0$. So the generator of $E_1^{5, {tq+2, \ast}}$ in the MSS converges to $a_{0}^{2}l_{n}$.

Since $d_{1}(h_{2, n}b_{1, n-1}h_{1, 0}a_{1})\neq 0$, then $E_{r}^{5, tq+2q+1}=\mathbb{Z}_p\{b_{2, n-1}h_{1, n}h_{1, 0}a_{1}\}$ for $r\geqslant 2$. Moreover, $h_{2, n}h_{1, n}h_{1, 0}a_{1}$ is a permanent cycle in the MSS which converges to $\tilde{\alpha}_2g_{n}$($a_{1}h_{1, 0}$ is a permanent cycle in the MSS and converges to $\widetilde{\alpha}_{2}\in{\rm{Ext}}_A^{\ast, {\ast}}(\mathbb{Z}_p, \mathbb{Z}_p)$), then $d_{r}(E_{r}^{4, tq+2q+1})=0$ for $r\geqslant 1$. Thus $b_{2, n-1}h_{1, n}h_{1, 0}a_{1}$ is not $d_{r}$-boundary and converges nontrivially to $\widetilde{\alpha}_{2}l_{n}$.

Since $a_{0}$, $b_{1, n-1}$, $h_{1, n}$ and $h_{1, n+1}$ are all permanent cycles in the MSS and converge to $a_{0}$, $b_{n-1}$, $h_{n}$ and $h_{n+1}$, respectively, it is easy to get that $a_{0}b_{1, n-1}h_{1, n}h_{1, n+1}$ is a permanent cycle in the MSS and converges to $a_{0}b_{n-1}h_{n}h_{n+1}$ which equals $0\in {\rm{Ext}}_A^{5, {tq+1}}(\mathbb{Z}_p, \mathbb{Z}_p)$ by $h_{n}h_{n+1}=0$. Furthermore, we have $d_{2p-1}(b_{2, n-1})=b_{1, n}h_{1, n}-b_{1, n-1}h_{1, n+1}$ from [10], then $d_{2p-1}(a_{0}b_{2, n-1}b_{1, n-1})\neq 0$ and so ${\rm{Ext}}_A^{5, {tq+1}}$ $(\mathbb{Z}_p, \mathbb{Z}_p)=0$.

Theorem 3.4  Let $p\geqslant7$, $n>3$, then

$h_{0}g_{n}\in{\rm{Ext}}_A^{3, {p^{n+1}q+2p^{n}q+q}}(\mathbb{Z}_p, \mathbb{Z}_p) $

is a permanent cycle in the ASS, and converges to a nontrivial element in $\pi_{p^{n+1}q+2p^{n}q+q-3}S.$

Proof  From [[20], Theorem 1.1], there is a nontrivial differential $d_{2}(g_{n})=a_{0}l_{n} (n\geqslant1)$ in the ASS, the elements $g_{n}$ and $l_{n}$ are called a pair of $a_{0}$-related elements. The condition of Theorem A in [7] can be established by the $\mathbb{Z}_p$-bases of ${\rm{Ext}}_A^{s, \ast}(\mathbb{Z}_p, \mathbb{Z}_p)$ $(s\leqslant 3)$ in [10] and Proposition 3.3 in the above. Furthermore, we have $\kappa\cdot (\alpha_{1})_{L}=(1_{E_{4}}\wedge p)f$ with $f\in [\sum^{tq+q}L, E_{4}]$ (see [7], 9.2.34), then $(1_{E_{4}}\wedge i)\kappa\cdot(\alpha_{1})_{L}=0$. Thus

$(1_{E_{4}}\wedge 1_{L}\wedge i)(\kappa\wedge 1_{L})\phi=(1_{E_{4}}\wedge 1_{L}\wedge i)(\kappa\wedge1_{L})((\alpha_{1})_{L}\wedge 1_{L})\widetilde{i}^{\prime\prime}=0, $

where $\widetilde{i}^{\prime\prime}\in\pi_{q}L\wedge L$ such that $((\alpha_{1})_{L}\wedge 1_{L})\widetilde{i}^{\prime\prime}=\phi$. It can be easily proved that $(\kappa\wedge1_{L})\phi=(\overline{c}_{3}\wedge1_{L})\sigma\phi, $ where $\sigma\phi\in\pi_{tq+2q}(KG_{3}\wedge L)$ is a $d_{1}$-cycle which represents $(\phi)_{\ast}(\sigma)\in {\rm{Ext}}_A^{3, tq+2q}(H^{\ast}L, \mathbb{Z}_p)$. Thus

$(\overline{c}_{3}\wedge 1_{L\wedge M})(1_{KG_{3}}\wedge i)\sigma\phi=0.$

So we can get that $(1_{L}\wedge i)_{\ast}\phi_{\ast}(g_{n})\in{\rm{Ext}}_A^{3, p^{n+1}q+2p^{n}q+q}(H^{\ast}L\wedge M, \mathbb{Z}_p)$ is a permanent cycle in the ASS. Then Theorem $3.4$ will be concluded by Theorem C in [7], here $\phi\in [\sum^{2q-1}S, L]$, $\kappa\in\pi_{tq+1}E_{4}$.

The Proof of Theorem 1.1  From Theorem 3.4, $h_{0}g_{n}\in {\rm{Ext}}_A^{3, {p^{n+1}q+2p^{n}q+q}}(\mathbb{Z}_p, \mathbb{Z}_p)$ is a permanent cycle in the ASS and converges to a nontrivial element $\varphi\in\pi_{p^{n+1}q+2p^{n}q+q-3}S$ for $n>3$.

Consider the following composition of mappings

$\tilde{f}{{\Sigma }^{{{p}^{n+1}}+2{{p}^{n}}q+q-3}}S\xrightarrow{\varphi }S\text{ }\xrightarrow{{{i}^{\prime \prime }}{{i}^{\prime }}i}V(2)\xrightarrow{{{\gamma }^{s}}}$
${{\Sigma }^{-s({{p}^{2}}+p+1)q}}V(2)\text{ }\xrightarrow{j{{j}^{\prime }}{{j}^{\prime \prime }}}{{\Sigma }^{-s({{p}^{2}}+p+1)q+(p+1)q+q}}S, $

because $\varphi$ is represented by $h_{0}g_{n}$ in the ASS, then the above $\widetilde{f}$ is represented by

$\widetilde{g}=(jj^{\prime}j^{\prime\prime})_{\ast}(\gamma^{s})_{\ast}(i^{\prime\prime}i^{\prime}i)_{\ast} (h_{0}g_{n})=(jj^{\prime}j^{\prime\prime}\gamma^{s}i^{\prime\prime}i^{\prime}i)_{\ast}(h_{0}g_{n})$

in the ASS. Furthermore, we know that $\gamma_{s}=jj^{'}j^{''}\gamma^{s}i^{\prime\prime}i^{\prime}i\in\pi_{\ast}S $ is represented by $\widetilde{\gamma}_{s}$ in the ASS. By using the Yoneda products, we know that the composition

$ \text{Ext}_{A}^{\text{0}, \text{0}}({{\mathbb{Z}}_{p}}, {{\mathbb{Z}}_{p}})\xrightarrow{{{({{i}^{\prime \prime }}{{i}^{\prime }}i)}_{\text{*}}}}\text{Ext}_{A}^{\text{0}, \text{0}}({{H}^{\text{*}}}V(\text{2}), {{\mathbb{Z}}_{p}})$
$\xrightarrow{{{(j{{j}^{\prime }}{{j}^{\prime \prime }})}_{*}}{{({{\gamma }^{s}})}_{*}}}\text{Ext}_{A}^{s, (s{{p}^{2}}+(s-1)p+(s-2))q+s-3}({{\mathbb{Z}}_{p}}, {{\mathbb{Z}}_{p}})$

is a multiplication (up to nonzero scalar) by

${\widetilde{\gamma}_{s}}\in{\rm{Ext}}_A^{s, sp^{2}q+(s-1)pq+(s-2)q+s-3}(\mathbb{Z}_p, \mathbb{Z}_p).$

Hence, the composite map $\widetilde{f}$ is represented (up to nonzero scalar) by

$\widetilde{\gamma}_{s}h_{0}g_{n}\in {\rm{Ext}}_A^{s+3, p^{n+1}q+2p^{n}q+sp^{2}q+(s-1)pq+(s-1)q+s-3}({\mathbb{Z}_p}, {\mathbb{Z}_p}) $

in the ASS.

From Proposition 3.1, we see that $\widetilde{\gamma}_{s}h_{0}g_{n}\neq 0$. Moreover, from Proposition 3.2, it follows that $\widetilde{\gamma}_{s}h_{0}g_{n}$ can not be hit by any differential in the ASS. Thus $\widetilde{\gamma}_{s}h_{0}g_{n}$ survives nontrivially to a homotopy element in $\pi_{\ast}S$.

References
[1] Adams J F. On the structure and application of Steenrod algebra[J]. Comm. Math. Helv., 1958, 32(1): 180–214. DOI:10.1007/BF02564578
[2] Adams J F. Stable homotopy and generalized homotopy[M]. Chicago: Univ. Chicago Press, 1974.
[3] Aikawa T. 3-dimensional cohomology of the mod p Steenrod algebra[J]. Math. Scand., 1980, 47: 91–115. DOI:10.7146/math.scand.a-11876
[4] Cohen R, Goeress P. Secondary cohomology operations that detect homotopy class[J]. Topology, 1984, 23(2): 177–194. DOI:10.1016/0040-9383(84)90038-7
[5] Cohen R. Odd primary infinite families in the stable homotopy theory[M]. Providence RI: AMS, 1981.
[6] Lin J K. Third periodicity families in the stable homotopy of spheres[J]. J. P. J. Geom. Topology, 2003, 3(3): 179–219.
[7] Lin J K. Adams spectral sequence and stable homotopy groups of spheres (in Chinese)[M]. Beijing: Science Press, 2007.
[8] Liu X G. A new family represented by b1g0γs in the stable homotopy of spheres[J]. Sys. Sci. Math., 2006, 26(2): 129–136.
[9] Lee C N. Detection of some elements in the stable homotopy groups of spheres[J]. Math. Z., 1996, 222(2): 231–246. DOI:10.1007/BF02621865
[10] Liulevicius A. The factorizations of cyclic reduced powers by secondary cohomology operations[M]. Providence RI: AMS, 1962.
[11] Mahowald M. A new infinite family in π*S[J]. Topology, 1977, 16(3): 249–256. DOI:10.1016/0040-9383(77)90005-2
[12] Miller H R, Ravenel D C, Wilson W S. Periodic phenomena in the Adams-Novikov spectral sequence[J]. Ann. Math., 1977, 106(3): 469–516. DOI:10.2307/1971064
[13] Ravenel D C. Complex cobordism and stable homotopy groups of spheres[M]. New York: Academic Press, 1986.
[14] Serre J P. Groupes d' homotopie et classes de groupes abeliens[J]. Ann. Math., 1953, 58(2): 258–294. DOI:10.2307/1969789
[15] Toda H. On spectra realizing exterior parts of the Steenrod algebra[J]. Topology, 1971, 10(1): 53–65. DOI:10.1016/0040-9383(71)90017-6
[16] Wang Y Y. A new familiy of filtration s +5 in the stable homotopy groups of spheres[J]. Acta. Math. Sci., 2008, 28(2): 321–332. DOI:10.1016/S0252-9602(08)60034-X
[17] Wang Y Y, Wang J L. A new family of elements in the stable homotopy groups of spheres[J]. J. Math., 2015, 35(2): 294–306.
[18] Wang Y Y, Wang J B. The nontrivility of ζn-related elements in the stable homotopy groups of sphere[J]. Math. Scand., 2015, 117: 304–319. DOI:10.7146/math.scand.a-22871
[19] Wang X J, Zheng Q B. The convergence of αs(n)h0hk in Adams spectral sequence[J]. Sci. China Math., 1998, 41(6): 622–628. DOI:10.1007/BF02876232
[20] Zhao H, Wang X J. Two nontrivial differentials in the Adams spectral sequence[J]. Chinese Ann. Math., 2008, 29A(1): 557–566.
[21] Zhong L N, Wang Y Y. Detection of a nontrivial product in the stable homotopy groups of spheres[J]. Alge. Geom. Top., 2013, 13: 3009–3029. DOI:10.2140/agt