数学杂志  2017, Vol. 37 Issue (4): 833-844   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
段辉明
邵凯亮
张清华
曾波
多重超平面完备残差图
段辉明1, 邵凯亮1, 张清华1, 曾波2     
1. 重庆邮电大学理学院, 重庆 400065;
2. 重庆工商大学商务策划学院, 重庆 400067
摘要:本文研究了任意维超平面完备残差图和多重超平面完备残差图,将Erdös、Harary和Klawe’s定义的平面残差图推广到任意维超平面.利用容斥原理以及集合的运算性质等方法,获得了任意维超平面完备残差图的最小阶和唯一极图,以及任意维超平面完备残差图的一个重要性质,同时获得了多重任意维超平面完备残差图的最小阶和唯一极图.
关键词残差图    邻域    同构    独立集    
MULTIPLY HYPERPLANE COMPLETE RESIDUAL GRAPH
DUAN Hui-ming1, SHAO Kai-liang1, ZHANG Qing-hua1, ZENG Bo2     
1. College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2. School of Business Planning, Chongqing Technology and Business University, Chongqing 400067, China
Abstract: In this paper, we study any number of dimensions hyperplane complete residual graphs and multiply any number of dimensions hyperplane complete residual graphs, and extend Erdös, Harary and Klawe's deflnition of plane complete residual graph to hyperplane and obtain dimensions hyperplane complete residual graph. With the method of including excluding principle and set operation, we obtain the minimum order of any number of dimensions hyperplane complete residual graphs and a unique minimal any number of dimensions hyperplane complete residual graph, and an important property of any number of dimensions hyperplane complete residual graph. In addition, we obtain the minimum order of multiply any number of dimensions hyperplane complete residual graphs and a unique minimal multiply any number of dimensions hyperplane complete-residual graphs.
Key words: residually graph     close neighborhood     isomorphic     independent set    
1 引言

1980年, Erdös, Harary和Klawe引入残差图[1]的概念, 他们研究了完备残差图, 对于任意正整数$m$$n$, 证明了$(m+1)K_{n}$是唯一的具有最小阶$(m+1)n$$m-K_{n}$ -残差图, 同时证明了$C_{5}$是唯一的具有最小阶5的连通的$K_{2}$ -残差图.当$n>1$, 且$n\neq2$时, 连通的$K_{n}$ -残差图的最小阶为$2(n+1)$; 当$n\neq2, 3, 4$时, $K_{n+1}\times$$K_{2}$是唯一的具有最小奇阶的连通的$K_{n}$ -残差图.对于残差图性质的研究国内外也有不少的研究成果[2-10], 文献[2]讨论了奇阶完备残差图的一些性质和结论, 并构造了一些奇阶完备残差图; 文献[3]研究了二重$K_{n}$ -残差图, 并得到当$n>3$时, 二重$K_{n}$ -残差图的最小阶并构造了极图.文献[4]研究了三重$K_{n}$ -残差图, 当$n<11$时的最小阶, 并构造了极图; 文献[5]研究了三重$K_{n}$ -残差图, 当$n\geq11$时的最小阶和极图.残差图的概念的提出也对计算机网络和信息方面有重要的意义, 文献[6-7]主要讨论的是残差图的应用. Erdös等人提出的残差图是定义在平面上的残差图, 残差图的定义还可以推广到超平面上[8-9]; 文献[8]得到3维超平面完备残差图的最小阶和唯一极图; 文献[9]得到3维超平面完备图与$K_{t}$合成残差图的最小阶和唯一极图.本文主要是把残差图推广到任意维超平面上, 并得到任意维超平面完备残差图的最小阶为$(n_{1}+1)(n_{2}+1)\cdots(n_{r}+1)$, 并构造了唯一的任意维超平面完备残差图, 同时得到任意维超平面完备残差图关于图的加法的重要性质, 最后得到多重任意维超平面完备残差图的最小阶为$(n_{1}+m)(n_{2}+m)\cdots(n_{r}+m)$, 并得到唯一的多重任意维超平面完备残差图.

2 预备知识

定义2.1  设图$G=(V, E)$, $u\in$$V=V(G)$, 集合$N(u)=\{x|x\in$$V(G), x $$u$邻接$\}$$N^{*}(u)=\{u\}\cup$$N(u)$分别叫做顶点$u$的邻域和闭邻域.

定义2.2  设$F$是一个给定的图, 如果对每一个顶点$u\in V(G)$, 从$G$中减去$u$的闭邻域$N^{*}(u)$得到的图与$F$同构[10-11], 则称图$G$$F$ -残差图.递归地, 定义$G$$m-F$ -残差图为, 如果对于任意$u\in V(G)$, $G-N^{*}(u)$得到的图都是$(m-1)-F$ -残差图.当然$1-F$ -残差图简单地叫做$F$ -残差图.

定义2.3  图$G$$r-1$维超平面完备图, 如果$x\in V(G)$, $V(G)=V_{1}\times V_{2}\times \cdots\times V_{r}$, 其中$x=\{(x_{1}, x_{2}, \cdots, x_{r})|x_{i}\in V_{i}, i=1, 2, \cdots, r\}$, $|V_{i}|=n_{i}, i=1, 2, \cdots, r$, 两个顶点$x=(x_{1}, x_{2}, \cdots, x_{r})$$y=(y_{1}, y_{2}, \cdots, y_{r})$相邻当且仅当$x\neq y$, 存在某个$k=1, 2, \cdots, r$, $x_{k}=y_{k}$.为方便起见, 本文用$HPK(n_{1}, n_{2}, \cdots, n_{r})$代替$r-1$维超平面完备图.

定义2.4  设$G_{1}=(V_{1}, E_{1})$, $G_{2}=(V_{2}, E_{2})$是两个图, $G_{1}$$G_{2}$合成$G=G_{1}[G_{2}]$, 定义为$V(G)=V_{1}\times$$V_{2}=\{x=(x_{1}, x_{2})|(x_{1}\in$$V_{1}, x_{2}\in$$V_{2}\}$, 两个顶点$u=(u_{1}, u_{2})$$v=(v_{1}, v_{2})$是相邻的当且仅当$u_{1}$$v_{1}$$G_{1}$相邻, 或者$u_{1}=v_{1}$, $u_{2}$$v_{2}$$G_{2}$中相邻.

定义2.5  令$G=(V, E)$, $S\subset V=V(G)$, 若$S$不存在两个点$x, y\in S$$G$中邻接, 而且$|S|=k$, 则称$S$$G$中的$k$ -独立集.

定义2.6  设图$G_{1}=(V_{1}, E_{1})$, $G_{2}=(V_{2}, E_{2})$, 定义$G=G_{1}+G_{2}$, 其中$V(G)=V_{1}\cup$$V_{2}$, $E(G)=E_{1}\cup$$E_{2}$$\cup E[K(V_{1}, V_{2})]$, 这里$K(V_{1}, V_{2})$是以$V_{1}$$V_{2}$为独立点集的完备二部图.

下面是文献[1]中的一个重要结论.

引理2.1[1]  设$G$$F$ -残差图, 则$d(u)=\nu(G)-\nu(F)-1$, $\forall$$u\in$$V(G)$, 其中$\nu(G)$$G$的阶.

文中没有定义的术语与符号参阅文献[1-8].

3 任意维超平面完备残差图的最小阶和唯一极图

由定义2.3可以直接得到下面引理.

引理3.1  若$G$$HPK(n_{1}, n_{2}, \cdots n_{r})$ -残差图, $n_{1}, n_{2}, \cdots n_{r}\geq r\geq3$, 则对任意两点$u, v\in V(G)$, 存在一点$w\in G$, 使得$u, v\in V(G)-N^{*}(w)$.

对于任意维超平面残差图还有以下结论.

引理3.2  若$G\cong HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1), n_{1}, $ $n_{2}, \cdots, n_{r}\geq1, r\geq2, $$G$$HPK(n_{1}, $ $n_{2}, \cdots, n_{r})$ -残差图.

  令$V(G)=V_{1}\times V_{2}\times \cdots \times V_{r}$, $|V_{i}|=n_{i}+1$, 点$x=(x_{1}, x_{2}, \cdots x_{r})$$y=(y_{1}, y_{2}, \cdots, y_{r})$彼此不相邻, 定义为$x_{i}\neq y_{i}$, $i=1, 2, \cdots, r$, 因此对于任意一点$v=(v_{1}, v_{2}, \cdots, v_{r})\in G$, 则有

$ G_{1}=G-N^{*}(v)\\ \ \ \ \ \ =\langle(x_{1}, x_{2}, \cdots, x_{r})|x_{i}\in V_{i}, x_{i}\neq v_{i}, i=1, 2, \cdots, r\rangle\\ \ \ \ \ \ =\langle V_{1}^{'}\times V_{2}^{'}\times \cdots V_{r}^{'}\rangle, $

其中$V_{i}^{'}=V_{i}-\{v_{i}\}\subset V_{i}, i=1, 2, \cdots, r$, 点$x=(x_{1}, x_{2}, \cdots, x_{r})\in G_{1}$$y=(y_{1}, y_{2}, \cdots, y_{r})\in G_{1}$, 且有$G_{1}\subset G$, 同时两点的邻接关系与在$G$中邻接关系相同, 因此$G_{1}\cong HPK(n_{1}, n_{2}, \cdots, n_{r})$, 由残差图的定义可知$G$$HPK(n_{1}, $ $n_{2}, \cdots , n_{r})$ -残差图.证毕.

引理3.3  若$G=HPK(n_{1}, n_{2}, \cdots n_{r})$, $\{v_{1}, v_{2}, \cdots, v_{r}, v_{0}\}$$G$$r+1$独立集, 则有

$ N^{*}(v_{1})\cap N^{*}(v_{2})\cap \cdots \cap N^{*}(v_{r})\cap N^{*}(v_{0})=\phi. $

  假设存在点$x=(x_{1}, x_{2}, \cdots, x_{r})\in N^{*}(v_{1})\cap N^{*}(v_{2})\cap \cdots \cap N^{*}(v_{r})\cap N^{*}(v_{0})$, 并且与$v_{k}=(v_{1}^{k}, v_{2}^{k}, \cdots, v_{r}^{k}), k=0, 1, \cdots, r$邻接, 由$G$的邻接条件可知, 存在一点$x_{i_{k}}=v_{i_{k}}^{k}$, 所以有$1\leq i_{k}\leq r, k=0, 1, \cdots, r$, $i_{k}=i_{l}=h$, $k\neq l$, 则一定存在$k, l$, 使得$v_{h}^{k}=v_{h}^{l}=x_{h}$, 然而$v_{h}^{k}$$v_{h}^{l}$$G$中不邻接, 从而导致矛盾.证毕.

引理3.4  若$H=HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1)$, $\{v, v_{1}, v_{2}, \cdots, v_{r}\}$$H$$(r+1)$ -独立集, 且设$H_{i}=H-N^{*}(v_{i}), i=1, 2, \cdots, r$, 则有

$ N^{*}(v)=N_{H_{1}}^{*}(v)\cup (N_{H_{2}}^{*}(v))\cap N_{H_{2}}^{*}(v_{1})\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cup\cdots\cup(N_{H_{k}}^{*}(v)\cap N_{H_{k}}^{*}(v_{1})\cap\cdots\cap N_{H_{k}}^{*}(v_{k-1}))\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cup\cdots\cup(N_{H_{r}}^{*}(v)\cap N_{H_{r}}^{*}(v_{1})\cap\cdots\cap N_{H_{r}}^{*}(v_{r-1})). $

  因为$V(H)=V(H_{i})\cup N^{*}(v_{i}), v\in V(H_{i})$, 所以

$ \ \ \ \ N^{*}(v)=N^{*}(v)\cap V(H)=N^{*}(v)\cap(V(H_{1})\cup N^{*}(v_{1}))\\ =(N^{*}(v)\cap V(H_{1}) )\cup(N^{*}(v)\cap (N^{*}(v_{1})) =(N_{H_{1}}^{*}(v)\cup(N^{*}(v)\cap (N^{*}(v_{1})) $

$ \ \ \ \ N^{*}(v)\cap N^{*}(v_{1})\cap\cdots\cap N^{*}(v_{i})\\ =(N^{*}_{H_{i+1}}(v)\cap (N^{*}_{H_{i+1}}(v_{1})\cap\cdots\cap N^{*}_{H_{i+1}}(v_{i}))\\ \ \ \ \ \cup (N^{*}(v)\cap N^{*}(v_{1})\cap\cdots\cap N^{*}(v_{i})\cap N^{*}(v_{i+1})), i=1, 2\cdots, r. $

引理3.5  如果$G\cong H\cong HPK(n_{1}, n_{2}, \cdots n_{r})$, $\{v_{1}, v_{2}, \cdots, v_{k}\}\subset V(G)$, 以及$\{u_{1}, u_{2}, \cdots, $ $ u_{k}\}\subset V(H)$分别是$G$$H$$k$ -独立集, 则有

$ |N_{G}^{*}(v_{1})\cap N_{G}^{*}(v_{2})\cap\cdots\cap N_{G}^{*}(v_{k})|=|N_{H}^{*}(v_{1})\cap N_{H}^{*}(v_{2})\cap\cdots\cap N_{H}^{*}(v_{k})|. $

  对于任意$k$ -独立集$\{v_{1}, v_{2}, \cdots, v_{k}\}\subset V(G)$, 这里把$G$的所有$k$ -独立集定义为一个函数, 记为$g_{k}$, 又假设$g_{k}=g(v_{1}, v_{2}, \cdots, v_{k})=|N^{*}(v_{1})\cap N^{*}(v_{2})\cap\cdots\cap N^{*}(v_{k})|$, 则$g_{k}$是一个常值函数, 因为当$k=1$时,

$ g_{1}=g(v)=|N^{*}(v)|=\nu(G)-\nu(G-N^{*}(v))=n_{1}n_{2}\cdots n_{r}-(n_{1}-1)(n_{2}-1)\cdots (n_{r}-1), $

所以$g_{1}=g(v)$为一个常数.类似地, 可以证明$g_{k}$是一个常数, 且由引理3.3可得知当$1<k<r+1$时, $g_{k}=0$.设$G_{k}=G-N^{*}(v_{1})-N^{*}(v_{2})-\cdots-N^{*}(v_{k})$, 则有$G_{k}\cong HPK(n_{1}-k, n_{2}-k, \cdots, n_{r}-k)$$\nu(G_{k})=(n_{1}-k)(n_{2}-k)\cdots(n_{r}-k)=v_{k}$, 因此有

$ \ \ \ \ |N^{*}(v_{1})\cup N^{*}(v_{2})\cup\cdots\cup N^{*}(v_{k})|\\ ={\displaystyle\sum^{k}_{i=1}}g(v_{i})-{\displaystyle\sum_{1\leq i<j\leq k}}g(v_{i}, v_{j})+\cdots+(-1)^{l-1}\\ \ \ \ \ {\displaystyle\sum_{1\leq i_{1}<i_{2}<\cdots<i_{l}\leq k}}g(v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{l}})+\cdots+(-1)^{k-1} g(v_{1}, v_{2}, \cdots, v_{k})\\ =\nu(G)-\nu(G_{k})=v-v_{k}. $

又由于$G\cong H$, 则存在一个映射$\sigma:V(H)\rightarrow V(G)$, $u_{1}$$u_{2}$$H$中邻接当且仅当$\sigma(u_{1})$$\sigma(u_{2})$$G$中彼此邻接.假设$v_{i}=\sigma(u_{i}), i=1, 2, \cdots, r$, 则有$\{v_{1}, v_{2}, \cdots, v_{k}\}\subset V(G)$是一个$k$ -独立集当且仅当$\{u_{1}, u_{2}, \cdots, u_{k}\}\subset V(H)$$k$ -独立集, 因此

$ |N_{G}^{*}(v_{1})\cap N_{G}^{*}(v_{2})\cap\cdots N_{G}^{*}(v_{k})|=|N_{H}^{*}(u_{1})\cap N_{H}^{*}(u_{2})\cap\cdots N_{H}^{*}(u_{k})|. $

定理3.1  若$ G$是一个$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $n_{1}, n_{2}, \cdots, n_{r}\geq r\geq 3$, 则有$\nu(G)\geq(n_{1}+1)(n_{2}+1)\cdots(n_{r}+1)$.

  对于任意一点$v\in G$, 有$G-N^{*}(v)=F\cong HPK(n_{1}, n_{2}, \cdots, n_{r})$, 记

$ V(F)=\{(x_{1}, x_{2}, \cdots, x_{r})|1\leq x_{i}\leq n_{i}, i=1, 2, \cdots, r\}, $

$x=(x_{1}, x_{2}, \cdots, x_{r})$$y=(y_{1}, y_{2}, \cdots, y_{r})$$ F$中彼此不邻接定义为当且仅当$x_{i}\neq y_{i}, i=1, 2, \cdots, r$.设$v_{k}=(k, k, \cdots, k), k=1, 2, \cdots, r$, 则有$\{v, v_{1}, v_{2}, \cdots, v_{r}\}$$G$中的$r+1$ -独立集.由引理3.4与3.5可知

$ F_{i}=G-N^{*}(v_{i})\cong HPK(n_{1}, n_{2}, \cdots, n_{r}), i=1, 2, \cdots, r. $

因此

$ N^{*}(v)=N^{*}_{F_{1}}(v)\cup(N^{*}_{F_{2}}(v)\cap N^{*}_{F_{2}}(v_{1}))\cup \cdots \cup(N^{*}_{F_{k}}(v)\cap N^{*}_{F_{k}}(v_{1})\cap\cdots\cap N^{*}_{F_{k}}(v_{k-1}))\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cup \cdots \cup(N^{*}_{F_{r}}(v)\cap N^{*}_{F_{r}}(v_{1})\cap\cdots\cap N^{*}_{F_{r}}(v_{r-1}))\cup (N^{*}(v)\cap N^{*}(v_{1})\cap \cdots\cap N^{*}(v_{r})). $

下面设$H=HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1)$, 则有

$ |N^{*}(v)|=|N^{*}_{F_{1}}(v)|+|N^{*}_{F_{2}}(v)\cap N^{*}_{F_{2}}(v_{1})|+\cdots+|(N^{*}_{F_{k}}(v)\cap N^{*}_{F_{k}}(v_{1})\cap\cdots\cap N^{*}_{F_{k}}(v_{k-1})|\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\cdots+|(N^{*}_{F_{r}}(v)\cap N^{*}_{F_{r}}(v_{1})\cap\cdots\cap N^{*}_{F_{r}}(v_{k-1})|+|N^{*}(v)\cap N^{*}(v_{1})\cap \cdots\cap N^{*}(v_{r})|\\ \ \ \ \ \ \ \ \ \ \ \ \ =|N^{*}_{H}(u)|+|N^{*}(v)\cap N^{*}(v_{1})\cap \cdots\cap N^{*}(v_{r})|, $

因此有

$ \nu(G)=\nu(F)+|N^{*}_{G}(v)|=\nu(F)+|N^{*}_{H}(u)|+|N^{*}(v)\cap N^{*}(v_{1})\cap\cdots\cap N^{*}(v_{r})|\\ \ \ \ \ \ \ \ \ \geq n_{1}n_{2}\cdots n_{r}+(n_{1}+1)(n_{2}+1)\cdots (n_{r}+1)-n_{1}n_{2}\cdots n_{r}\\ \ \ \ \ \ \ \ \ =(n_{1}+1)(n_{2}+1)\cdots (n_{r}+1). $

证毕.

上面得到$r-1$维超平面残差图的最小阶, 下面主要构造最小图, 并证明此图是唯一的极图.为了得到极图, 设$ G$是一个$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $n_{1}, n_{2}, \cdots, n_{r}\geq r\geq 3$, 主要任务是命名$ G$中点的名称以及点与点的邻接关系以及相应的命名规则.首先定义$G$中的点和邻接关系, 设

$ V(G)=V_{1}\times V_{2}\times\cdots\times V_{r}=\{(x_{1}, x_{2}, \cdots, x_{r})|0\leq x_{i}\leq n_{i}, i=1, 2, \cdots, r\}. $

定义点$x=(x_{1}, x_{2}, \cdots, x_{r})$$y=(y_{1}, y_{2}, \cdots, y_{r})$彼此不相邻当且仅当$x_{i}\neq y_{i}, i=1, 2, \cdots, r$.对任意一点$u\in G$, 则有$G-N^{*}(u)=H\cong HPK(n_{1}, n_{2}, \cdots, n_{r})$.下面定义$H$中的点

$ V(H)=\{(x_{1}, x_{2}, \cdots, x_{r})|1\leq x_{i}\leq n_{i}, i=1, 2, \cdots, r\}, $ (3.1)

$H$中定义两点不相邻与在$G$中的定义一致, 由此可以根据(3.1) 式定义$G$的任何一个子集.又由于$H=G-N^{*}(v)$, 要命名$G$中的点, 首先命名$N^{*}(v)$中的点.设$v_{k}=(k, k, \cdots, k), k=1, 2, \cdots, r$, 则有

$ H_{k}=G-N^{*}(v_{k})\cong HPK(n_{1}, n_{2}, \cdots, n_{r}), k=1, 2, \cdots, r. $

由引理3.4可得

$ N^{*}(v)=N^{*}_{H_{1}}(v)\cup(N^{*}_{H_{2}}(v)\cap N^{*}_{H_{2}}(v_{1}))\cup \cdots \cup(N^{*}_{H_{k}}(v)\cap N^{*}_{H_{k}}(v_{1})\cap\cdots\cap N^{*}_{H_{k}}(v_{k-1}))\nonumber\\ \cup \cdots \cup(N^{*}_{H_{r}}(v)\cap N^{*}_{H_{r}}(v_{1})\cap\cdots\cap N^{*}_{H_{r}}(v_{r-1}))\cup (N^{*}(v)\cap N^{*}(v_{1})\cap \cdots\cap N^{*}(v_{r})). $ (3.2)

再根据引理3.5可知

$ |N^{*}(v)|=\nu(G)-\nu(H)=(n_{1}+1)(n_{2}+1)\cdots(n_{r}+1)-n_{1}n_{2}\cdots n_{r}. $

再由引理3.3知$N^{*}(v)\cap N^{*}(v_{1})\cap \cdots\cap N^{*}(v_{r})=\phi$, 所以(3.2) 式最后一个并集的集合为空集, 所以(3.2) 式应为

$ N^{*}(v)=N^{*}_{H_{1}}(v)\cup(N^{*}_{H_{2}}(v)\cap N^{*}_{H_{2}}(v_{1}))\cup \cdots \cup(N^{*}_{H_{k}}(v)\cap N^{*}_{H_{k}}(v_{1})\cap\cdots\cap N^{*}_{H_{k}}(v_{k-1}))\nonumber\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cup \cdots \cup(N^{*}_{H_{r}}(v)\cap N^{*}_{H_{r}}(v_{1})\cap\cdots\cap N^{*}_{H_{r}}(v_{r-1}). $ (3.3)

为了命名$G$中的所有点, 因为$H=G-N^{*}(v)$以及$H_{k}=G-N^{*}(v_{k})$, 故下面先命名$N^{*}(v_{k})$命名规则, 设$H=HPK(n_{1}, n_{2}, \cdots, n_{r})$, $n_{1}, n_{2}, \cdots, n_{r}\geq r\geq3$,

$ V(H)=\{(x_{1}, x_{2}, \cdots, x_{r})|1\leq x_{i}\leq n_{i}, i=1, 2, \cdots, r\}, $

$x=(x_{1}, x_{2}, \cdots, x_{r})$$y=(y_{1}, y_{2}, \cdots, y_{r})$不相邻定义为当且仅当$x_{i}\neq y_{i}, i=1, 2, \cdots, r$.设$v=v_{1}=(1, 1, \cdots, 1)$,

$ F_{1}=H-N^{*}(v_{1})=\langle(x_{1}, x_{2}, \cdots, x_{r})|2\leq x_{i}\leq n_{i}, i=1, 2, \cdots, r \rangle, $

则有下面命名规则.

命名规则3.1   $R_{1}:i_{1}, i_{2}, \cdots, i_{l}, i_{l+1}, \cdots, i_{r}$$\{1, 2, \cdots, r\}$的一个排列, 其中$1\leq i_{1}<i_{2}<\cdots<i_{l}\leq r$, $1\leq i_{l+1}<\cdots<i_{r}\leq r, 1\leq l\leq r-1$.

$R_{2}:a_{1}, a_{2}, \cdots, a_{l}$是一个序列, 其中$2\leq a_{k}\leq n_{i_{k}}, k=1, 2, \cdots, l$.

$R_{3}:Y=\{(y_{1}, y_{2}, \cdots, y_{r})\in F_{1}|y_{i_{r}}\neq a_{k}, k=1, 2, \cdots, l\}$.

$R_{4}:b_{1}, b_{2}, \cdots, b_{r}$是一个序列, 其中$1\leq b_{k}\leq n_{i_{k}}, b_{k}\neq a_{k}, k=1, 2, \cdots, l$.

$R_{5}:u_{k}=(u_{1}^{k}, u_{2}^{k}, \cdots, u_{r}^{k}), k=1, 2, \cdots, l$, 其中$u_{i_{k}}^{k}=a_{k}, u_{i_{t}}^{k}=b_{t}, 1\leq t\leq l, t\neq k, u_{i_{l+1}}^{k}=\cdots=u_{i_{r}}^{k}=2$, 则有唯一点$x^{*}\in N_{F}^{*}(v)$, 满足

$R_{6}:x^{*}$是与$u_{1}, u_{2}, \cdots, u_{l}$邻接的.

$R_{7}:x^{*}$$Y$中的点彼此不邻接.

下面说明命名规则3.1合理性, 设$x^{*}=(x_{1}, x_{2}, \cdots, x_{r})$, $x_{i_{k}}=a_{k}, k=1, 2, \cdots, l, x_{i_{l+1}}=\cdots=x_{i_{r}}=1$, 这里点$x^{*}$是满足$C_{6}$$C_{7}$这两条性质的, 且这样的$x^{*}$是唯一的, 因为$x^{*}$$Y$中点是彼此不邻接的, 因此有$x_{i_{l+1}}=\cdots=x_{i_{r}}=1$.

下面需要证明的是$x_{i_{k}}=a_{k}$, $x^{*}$是不邻接$y\in Y$, $x_{i_{k}}$仅仅只能为$a_{k}$或者1, 而这里$x_{i_{k}}\neq b_{k}$, 故有$x^{*}$$u_{k}$邻接的, 以及$x_{i_{k}}=a_{k}, k=1, 2, \cdots, l$, 命题规则是合理的.

检验$N^{*}(v_{1})$的点的关键条件是命名规则3.1中$R_{1}$, $R_{2}$, $R_{3}$, 由于$b_{1}, b_{2}, \cdots, b_{l}$选择是不唯一的, 导致$u_{1}, u_{2}, \cdots, u_{l}$也是不唯一的, 所以命名的关键主要是$R_{1}$, $R_{2}$, $R_{3}$, 因此这三个条件可以作为整个图$G$的命名条件, 于是得到下面的命名规则.

命名规则3.2  命名规则3.1中的$R_{1}$, $R_{2}$, $R_{3}$可以唯一确定$ N(v_{1})$中的每一个点, 相反$ N^{*}(v_{1})$中的所有的点如果都已经确定, 则命名规则3.1中$R_{1}$, $R_{2}$, $R_{3}$也相应被确定.

命名规则3.2的前部分可直接由命名规则3.1的说明得到, 下面说明结论的后半部分.

$x=(x_{1}, x_{2}, \cdots, x_{r})\in N(v_{1})$, 根据$N(v_{1})$的点的性质, 可以重新命名规则3.1中的$R_{1}$, $R_{2}$, $R_{3}$.

$R_{1}:$ $i_{1}, i_{2}, \cdots, i_{l}, i_{l+1}, \cdots, i_{r}$, $1\leq i_{1}<i_{2}<\cdots<i_{l}\leq r$, $1\leq i_{l+1}<\cdots<i_{r}\leq r, 1\leq l\leq r-1$, 其中$x_{i_{l+1}}=\cdots=x_{i_{r}}=1$, $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{1}}\neq1$.

$R_{2}:$ $a_{1}, a_{2}, \cdots, a_{l}$是一个排列, 其中$a_{k}=x_{i_{k}}$, $2\leq a_{k}\leq n_{i_{k}}, k=1, 2, \cdots, l$.

$R_{3}:$ $Y=\{(y_{1}, y_{2}, \cdots, y_{r})\in F_{1}|y_{i_{k}}\neq a_{k}, k=1, 2, \cdots, l\}$.

由此可以根据命名规则3.1和3.2命名所有的$N^{*}(v_{k})$中的点, 其中$v_{k}=(k, k, \cdots, k), k=1, 2, \cdots, r$.如果有$N_{H}(v)$的点$x$未命名, 其中$H=HPK(n_{1}, n_{2}, \cdots, n_{r})$, $n_{1}, n_{2}, \cdots, n_{r}\geq r\geq 3$, 则可以任意找一点$v\in H$, 根据$H-N^{*}(v)$中的点的命名规则命名, 即可以根据命名规则3.1和3.2命名.对于$N(v)$中点的命名可以根据$N^{*}(v)$的点命名, 只须设$v=(0, 0, \cdots, 0)$, 所以$N(v)$的点的命名规则也被确定.

因为$H=G-N*(v)$, 以及$H_{k}=G-N^{*}(v_{k})$, 要确定$G$中的点, 最后剩下$N_{H_{k}}(v)$中的点没有命名规则, 由式子(3.1), (3.3) 可知首先命名$N_{H_{1}}(v)$中的点, 有下面的命名规则.

命名规则3.3  只需要把命名规则3.1和3.2中的1用0代替即可得到$N_{H_{1}}(v)$中的点的命名规则.

因为$H=G-N^{*}(v_{1}), v_{1}=(1, 1, \cdots, 1)$, $V(H_{1})=\{(x_{1}, x_{2}, \cdots, x_{r})|0\leq x_{i}\leq n_{i}, x_{i}\neq1\}$. $N_{H_{1}}(v)$中的点可以根据

$ V(H_{1})-N^{*}(v)=V(H)-N^{*}(v_{1})=G-N^{*}(v)-N^{*}(v_{1}) $

的点命名, 即根据$H=G-N^{*}(v)$的点命名规则命名, 只须把命名规则3.1和3.2中的1用0代替即可.

下面命名$N_{H_{2}}(v)\cap N_{H_{2}}(v_{1})$的点.由于

$ H_{2}=G-N^{*}(v_{2})\cong HPK(n_{1}, n_{2}, \cdots, n_{r}), v_{2}=(2, 2, \cdots, 2), \\ H-N^{*}(v_{k})=G-N^{*}(v)-N^{*}(v_{k})=H_{k}-N^{*}(v)=F_{k}, \\ V(H_{2})=\{(x_{1}, x_{2}, \cdots, x_{r})|0\leq x_{i}\leq n_{i}, x_{i}\neq2, i=1, 2, \cdots, r\}, $

为了命名$N_{H_{2}}^{*}(v)\cap N_{H_{2}}^{*}(v_{1})$中的点, 可以根据$V(H_{2})-N_{H_{2}}^{*}(v)=V(H)-N_{H}^{*}(v_{2})$中的点命名, 首先说明$H_{2}$中点的命名规则.

命名规则3.4  $R_{1}:$ $i_{1}, i_{2}, \cdots, i_{l}, i_{l+1}, \cdots, i_{r}$一个排列.

$R_{2}:$ $a_{1}, a_{2}, \cdots, a_{l}$是一个序列, 其中$1\leq a_{k}\leq n_{i_{k}}, a_{k}\neq2, k=1, 2, \cdots, l, 1\in\{a_{1}, a_{2}, $ $\cdots, a_{l}\}$.

$R_{3}:$ $Y=\{(y_{1}, y_{2}, \cdots, y_{r})\in F_{2}|y_{i_{k}}\neq a_{k}, k=1, 2, \cdots, l\}$.

命名规则3.4只在命名规则3.2的$R_{2}$增加了条件$1\in\{a_{1}, a_{2}, \cdots, a_{l}\}$, 增加此条件的目的主要是保证条件$R_{1}$, $R_{2}$, $R_{3}$确定的点$x$一定是属于$N_{H_{2}}^{*}(v)\cap N_{H_{2}}^{*}(v_{1})$.如果不增加此条件, 根据图$G$的点的命名的唯一性原则, 只能确定$N_{H_{2}}^{*}(v)$中的点$x$, 增加此条件后在$N_{H_{2}}^{*}(v)\cap N_{H_{2}}^{*}(v_{1})$找一点$x^{*}$, 而点$x^{*}$可以分别在$H_{1}$$H_{2}$重新命名.

下面主要说明$x^{*}$$H_{1}$$H_{2}$的命名是一致的, 前面命名规则3.4命名了$H_{2}$中的点.下面先完成$H_{1}$中的命名规则: $x^{*}$$H_{1}$命名为$(x_{1}, x_{2}, \cdots, x_{r})$.又由于$x^{*}$不邻接$v_{2}=(2, 2, \cdots, 2)\in H_{1}$, 因此在$H_{1}$中的命名规则可以如下.

命名规则3.5  $R_{1}:$ $i_{1}, i_{2}, \cdots, i_{l}, i_{l+1}, \cdots, i_{r}$是一个排列, 其中$x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}}\neq0, 1, 2$, $x_{i_{l+1}}=\cdots=x_{i_{l}}=0$.

$R_{2}:$ $ a_{1}, a_{2}, \cdots, a_{l}$是一个序列, 其中$ a_{k}= x_{i_{k}}\neq0, 1, 2, k=1, 2, \cdots, l$.

$R_{3}:$ $Y=\{(y_{1}, y_{2}, \cdots, y_{r})\in F_{2}|y_{i_{k}}\neq a_{k}, k=1, 2, \cdots, l\}$.

下面说明$x^{*}$$H_{1}$$H_{2}$中命名是一致的, 假设在$H_{2}$中有一点$x^{**}=(x_{1}^{'}x_{2}^{'}\cdots x_{r}^{'})$, 其中$x_{i_{k}}^{'}=a_{k}, k=1, 2, \cdots, l$以及$x_{i_{l+1}}^{'}=\cdots=x_{i_{l}}^{'}=0$$a_{k}\neq0, 1, 2$, 因此$x^{**}$是与点$v_{1}=(1, 1, \cdots, 1)\in H_{2}$不邻接的, 而$x^{**}\in (N_{H_{1}}^{*}(v)\cap N_{H_{2}}^{*}(v))$, 从而$x^{**}=x^{*}$, 故$x^{*}$$H_{1}$$H_{2}$中命名是一致的.

以上完成了$N_{H_{2}}^{*}(v)\cap N_{H_{2}}^{*}(v_{1})$中的点命名, 对于$N_{H_{k}}^{*}(v)\cap N_{H_{k}}^{*}(v_{1})\cap\cdots\cap N_{H_{k}}^{*}(v_{k-1})$的点的命名与$N_{H_{2}}^{*}(v)\cap N_{H_{2}}^{*}(v_{1})$中点的命名规则类似, 只须在命名规则3.5的$R_{2}$$R_{3}$改为以下规则即可.

命名规则3.6  $R_{1}:$ $i_{1}, i_{2}, \cdots, i_{l}, i_{l+1}, \cdots, i_{r}$是一个排列, 其中$x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}}\neq0, 1, 2$, $x_{i_{l+1}}=\cdots=x_{i_{l}}=0$.

$R_{2}:$ $ a_{1}, a_{2}, \cdots, a_{l}$是一个序列, 其中$1\leq a_{t}\leq n_{i_{t}}, a_{t}\neq k, $以及$\{1, 2, \cdots, k-1\}\subset \{a_{1}, a_{2}, \cdots, a_{k}\}$.

$R_{3}:$ $ Y=\{(y_{1}, y_{2}, \cdots, y_{r})\in F_{k}|y_{i_{t}}\neq a_{t}, t=1, 2, \cdots, l\}$.

根据上面的命名规则可以确定$x^{*}=(x_{1}, x_{2}, \cdots, x_{r})$, 且$x^{*}\in N_{H_{k}}^{*}(v)\cap N_{H_{k}}^{*}(v_{1})\cap\cdots\cap N_{H_{k}}^{*}(v_{k-1})$, 由上面的结论, 可设$k=r$, 则可以得到式子(3.3) 的最后一个式子$N_{H_{r}}^{*}(v)\cap N_{H_{r}}^{*}(v_{1})\cap\cdots\cap N_{H_{r}}^{*}(v_{r-1})$命名规则.

命名规则3.7  $R_{1}:$ $i_{1}, i_{2}, \cdots, i_{r-1}, i_{r}$是一个排列, 且有$1\leq i_{1}<i_{2}<\cdots<i_{r-1}\leq r$, $1\leq i_{r}\leq r$.

$R_{2}:$ $ a_{1}, a_{2}, \cdots, a_{r-1}$是一个序列, 其中$\{a_{1}, a_{2}, \cdots, a_{r-1}\}=\{1, 2, \cdots, r-1\}$.

$R_{3}:$ $ Y=\{(y_{1}, y_{2}, \cdots, y_{r})\in F_{r}|y_{i_{k}}\neq a_{k}, k=1, 2, \cdots, r-1\}$.

根据上面的命名规则$R_{1}$, $R_{2}$, $R_{3}$, 可以完全命名$H_{r}$, 这里$H_{r}=G-N^{*}(v_{k})$, 前面定义了$N^{*}(v_{k})$的命名规则, 这样$G$中的所有的点被$H_{r}$$N^{*}(v_{k})$点完全决定, 可以命名为$V(G)=\{(x_{1}, x_{2}, \cdots, x_{r})|0\leq x_{i}\leq n_{i}\}$, $G$中的两点$x=(x_{1}, x_{2}, \cdots, x_{r})$$y=(y_{1}, y_{2}, \cdots, y_{r})$彼此不邻接当且仅当$x_{i}\neq y_{i}, i=1, 2, \cdots, r$.

根据上面的命名原则可以得到下面结论.

定理3.2  若$G$$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $n_{1}, n_{2}, \cdots, n_{r}\geq r\geq 3$, $\nu(G)=(n_{1}+1)(n_{2}+1)\cdots(n_{r}+1)$, 则$G\cong HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1)$, 且这样的$G$是唯一的.

  对于$G$中任意两点$x$$y$, 根据引理3.1可知, 一定存在一点$w$, 使得$w$$x$$y$都不邻接.假设$w\in H_{k}$, 其中$ H_{k}$是遵循上面的命名规则, 对于任意一个$k$, 如果既有$x\in H_{k}$也有$y \in H_{k}$, 则可以使用$H_{k}$命名规则来命名.设$H^{*}=G-N^{*}(w)\cong HPK(n_{1}, n_{2}, \cdots n_{r})$, 则有$x, y\in H^{*}$.因为$G$中的点可根据$H_{k}$中的点命名规则命名, 又根据命名的唯一性可以命名$G$中所有的点, 因为$H^{*}=G-N^{*}(w)$, 所以根据$G$命名规则命名$H^{*}$的点, 事实上$x, y\in H^{*}=G-N^{*}(w)$, 根据命名规则可知, $x=(x_{1}, x_{2}, \cdots, x_{r})$$y=(y_{1}, y_{2}, \cdots, y_{r})$是彼此不邻接的, 故$G$中任意两点都彼此不邻接, 所以$G\cong HPK(n_{1}+1, n_{2}+1, \cdots n_{r}+1)$, 再由点的邻接关系$HPK(n_{1}+1, n_{2}+1, \cdots n_{r}+1)$是唯一最小的$r-1$维超平面完备残差图.

4 任意维超平面完备残差图的一个重要的性质

这一节主要是讨论任意维超平面完备残差图的结构, 主要有下面的结果.

定理4.1  若$G$$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $n_{1}, n_{2}, \cdots, n_{r}\geq r+2\geq5$, 则有$\nu(G)=k(n_{1}+1)(n_{2}+1)\cdots(n_{r}+1)$, $G=G_{1}+G_{2}+\cdots+G_{k}$, 且$G_{i}\cong HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1), i=1, 2, \cdots, k$.

为了证明此定理, 先定义有关超平面的点独立集的坐标变换.

定义4.1  如果$H=HPK(n_{1}, n_{2}, \cdots, n_{r})$, $V(H)=\{(x_{1}, x_{2}, \cdots, x_{r})|1\leq x_{i}\leq n_{i}, i=1, 2, \cdots, r\}$, 假设独立集$S_{1}=\{v_{1}, v_{2}, \cdots, v_{r}, v_{0}\}$$S_{2}=\{u_{1}, u_{2}, \cdots, u_{r}, u_{0}\}$, 且$S_{1}$$S_{2}$都是$(r+1)$ -独立集. $S_{2}$$S_{1}$坐标变换定义如下, 如果$u_{i}=v_{i}, i=0, 1, 2, \cdots, r;i\neq k, l$, 其中$u_{i}=(u_{1}^{i}, u_{2}^{i}, \cdots, u_{r}^{i})$, $v_{i}=(v_{1}^{i}, v_{2}^{i}, \cdots, v_{r}^{i})$, $i=0, 1, 2, \cdots, r$, 使得$u_{j}^{k}=v_{j}^{k}$或者$v_{j}^{l}$或者$x_{j}$, $u_{j}^{l}=v_{j}^{l}$或者$v_{j}^{k}$或者$y_{j}, j=1, 2, \cdots, r$, $x_{j}, y_{j}\neq v_{j}^{i}, i=0, 1, 2, \cdots, r$, 则有$u_{j}^{k}\neq u_{j}^{l}$.

由定义4.1, 可以直接得到下面引理.

引理4.1  如果$H=HPK(n_{1}, n_{2}, \cdots, n_{r})$, $V(H)=\{(x_{1}, x_{2}, \cdots, x_{r})|1\leq x_{i}\leq n_{i}, i=1, 2, \cdots, r\}$, $n_{1}, n_{2}, \cdots n_{r}\geq r+1\geq4$, 则对任意$u\in H$, 存在一个$(r+1)$ -独立集$\{u_{1}, u_{2}, \cdots, u_{r}, $ $u\}$, 可以和任何一个$(r+1)$ -独立集$\{v_{1}, v_{2}, \cdots, v_{r}, v\}$进行坐标变换.

下面证明定理4.1.

$v_{0}, v_{1}, \cdots, v_{r}$是图$G$中的$r+1$独立集.若$H_{i}=G-N^{*}(v_{i})\cong HPK(n_{1}, n_{2}, $ $\cdots, n_{r}), i=0, 1, \cdots, r$.设$G_{1}=<H_{0}\cup H_{1}\cup H_{2}\cup\cdots\cup H_{r}>$, 假设$G_{1}\subset G$$G$中由$H_{0}, H_{1}, \cdots, H_{r}$生成的最小子图, 显然, $v_{i}\notin H_{i}$, 以及$v_{i}\in H_{j}, i, j=0, 1, 2, \cdots, r, i\neq j$. $N^{*}(v_{i})\cap V(H_{i})=\phi, i=0, 1, 2, \cdots, r$, 因此有

$ H_{i}=H_{i}-N^{*}(v_{i})\subset G_{1}-N^{*}(v_{i})\subset G-N^{*}(v_{i})=H_{i}, i=0, 1, 2, \cdots, r, \\ H_{i}= G_{1}-N^{*}(v_{i})=G_{1}-N^{*}_{G_{1}}(v_{i}), i=0, 1, 2, \cdots, r. $

下证$G_{1}\cong HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1)$, 因为$G_{1}-N^{*}(v_{i})=H_{i}\cong HPK(n_{1}, n_{2}, \cdots, n_{r})$, 则有

$ N_{G_{1}}^{*}(v_{0})=N_{H_{1}}^{*}(v_{0})\cup(N_{H_{2}}^{*}(v_{0})\cap N_{H_{2}}^{*}(v_{1}))\cup \cdots \cup(N^{*}_{H_{k}}(v_{0})\cap N^{*}_{H_{k}}(v_{1})\cap\cdots\cap N^{*}_{H_{k}}(v_{k-1}))\\ \cup \cdots \cup(N^{*}_{H_{r}}(v_{0})\cap N^{*}_{H_{r}}(v_{1})\cap\cdots\cap N^{*}_{H_{r}}(v_{r-1}))\cup (N_{G_{1}}^{*}(v_{0})\cap N_{G_{1}}^{*}(v_{1})\cap \cdots\cap N_{G_{1}}^{*}(v_{r})) $

以及

$ N_{G_{1}}^{*}(v_{0})\cap N_{G_{1}}^{*}(v_{1})\cap \cdots\cap N_{G_{1}}^{*}(v_{r})=V(G_{1})\cap N^{*}(v_{0})\cap N^{*}(v_{1})\cap\cdots\cap N^{*}(v_{r})\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ={\displaystyle\bigcup ^{r}_{i=0}}(V(H_{i}))\cap(N^{*}(v_{0})\cap\cdots\cap N^{*}(v_{r}))=\phi, $

再由引理3.4和引理3.5可知

$ \nu(G_{1})=(n_{1}+1)(n_{2}+1)\cdots (n_{r}+1). $

如果$G_{1}=G$, 再根据定理3.2知, $G$是最小阶的$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图.如果$G_{1}\neq G$, 设$N^{*}(v_{0})\cap N^{*}(v_{1})\cap\cdots\cap N^{*}(v_{r})=W$, 则有$W\neq\phi$以及$G_{1}=G-W$, 并且$V(G_{1})\cap W=\phi$, 因此$V(G_{1})\subseteq V(G)-W$.对于任意$x\in V(G)-W$, 有$x\notin W$, 以及$x\notin N^{*}(v_{i})$, 对任意的$i$, 有$x\in G-N^{*}(v_{i})=H_{i}\subset G_{1}$, 所以$V(G)-W\subseteq V(G_{1})$, 以及$G_{1}=G-W$, 故有$G_{1}$$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图.

由上面证明可知任意的$x\in G_{1}$都与任意$w\in W$邻接.下面证明对于任意的$x\in H_{0}$, $x$都与任意的$w\in W$邻接的.因为$H_{0}=G-N^{*}(v_{0})$, 所以有$\{v_{1}, v_{2}, \cdots, v_{r}\}\subset V(H_{0})$, 由条件可知$v\in H_{0}$以及$\{v_{1}, v_{2}, \cdots, v_{r}, v\}$$H_{0}$$(r+1)$ -独立集, 且$v$也是与任意的$w\in W$邻接的, 若不然, $v$不与$w^{*}\in W$邻接, 则有

$ H=G-N^{*}(v)\cong HPK(n_{1}, n_{2}, \cdots, n_{r}) $

以及$\{v_{0}, v_{1}, \cdots, v_{r}\}\subset V(H)$$H$ $(r+1)$ -独立集, 因此存在$w^{*}\in H$, 即$w^{*}\in N_{H}^{*}(v_{0})\cap N_{H}^{*}(v_{1})\cap\cdots\cap N_{H}^{*}(v_{r})\neq \phi$, 这与引理3.2矛盾, 故有$W\subset N^{*}(v)$.

因为$n_{1}, n_{2}, \cdots, n_{r}\geq r+2\geq5$, 因此存在两点$u, v\in H_{0}$, 使得$\{v_{1}, v_{2}, \cdots, v_{r}, u, $ $v\}$ $\subset V(H)$$(r+2)$ -独立集, 则$W\subset N^{*}(u)\cap N^{*}(v)$.现在假设$\{v_{1}^{'}, v_{2}^{'}, v_{3}, v_{4}$ $\cdots, u, v\} $$(r+2)$ -独立集, 则$H_{0}$中存在另一点$\{v_{1}, v_{2}, \cdots, v_{r}, u, v\}$与之进行坐标变换.根据上面的讨论同样可得$W\subset N^{*}(v_{1}^{'})\cap N^{*}(v_{2}^{'})$, 再由引理3.1可知对任意$x\in H_{0}$, 以及$x\in G_{1}$, 都有$x$是与任意$w\in W$邻接的, 因此有

$ G_{1}-N_{G_{1}}^{*}(x)=(G-W)-N_{G_{1}}^{*}(x)=G-(W\cup N_{G_{1}}^{*}(x))\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =G-N^{*}(x)\cong HPK(n_{1}, n_{2}, \cdots, n_{r}), \forall x\in G_{1}. $

下面证明$G_{1}$$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图.由于$\nu(G)=(n_{1}+1)(n_{2}+1)\cdots (n_{r}+1)$, 根据定理3.2, 有$G\cong HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1)$.又因为任意$w\in W$, 则有$V(G_{1})\subset N^{*}(w)$.设$<W>=F$, 则有$G=G_{1}+F$以及

$ G-N^{*}(w)=G-(N_{F}^{*}(w)\cup V(G_{1}))=G-V(G_{1})-N_{F}^{*}(w)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =F-N_{F}^{*}(w)\cong HPK(n_{1}, n_{2}, \cdots, n_{r}), $

由于$w\in W$的任意性, $F$$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, 所以对$F$可以类似的讨论, $G_{2}\subseteq F$的一个最小子图, 则$G_{2}\cong HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1), F=G_{2}+F_{1}, $其中$F_{1}=F-V(G_{2})$.重复前面在$G$中的讨论, 则有

$ G=G_{1}+G_{2}+\cdots+G_{k}, G_{i}\cong HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1), i=1, 2, \cdots, k. $
5 多重超平面完备残差图的最小阶和唯一极图

根据多重超平面残差图的定义容易得到引理5.1和5.2.

引理5.1  若$G=(V, E)$, $\{v_{0}, v_{1}, \cdots, v_{r}\}\in G\subset V(G)$$G$$(k+1)$ -独立集, 则有

$ N^{*}(v_{1})\cap N^{*}(v_{2})\cap\cdots \cap N^{*}(v_{k})= (N^{*}_{F}(v_{1})\cap N^{*}_{F}(v_{2})\cap\cdots\cap N^{*}_{F}(v_{k}))\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cup(N^{*}(v_{1})\cap N^{*}(v_{2})\cap\cdots \cap N^{*}(v_{k})\cap N^{*}(v_{0})), $

其中$F=G-N^{*}(v_{0})$.

引理5.2  令$G=(V, E)$, $u_{1}, u_{2}, \cdots, u_{k}\in G$, $\{v_{0}, v_{1}, \cdots, v_{r}\}\subset V(G)$$G$$(r+1)$ -独立集, 对每一个$v_{i}$都不与$u_{j}$邻接.令$F_{i}=G-N^{*}(v_{i}), i=1, 2, \cdots, l $, 则有

$ N^{*}(u_{1})\cap N^{*}(u_{2})\cap\cdots \cap N^{*}(u_{k})= (N^{*}_{F_{1}}(u_{1})\cap N^{*}_{F_{1}}(u_{2})\cap\cdots\cap N^{*}_{F_{1}}(u_{k}))\cup(N^{*}_{F_{2}}(u_{1})\\ \cap N^{*}_{F_{2}}(u_{2})\cap\cdots\cap N^{*}_{F_{2}}(u_{k})\cap N^{*}_{F_{2}}(v_{1}))\cup\cdots\cup (N^{*}_{F_{l}}(u_{1})\cap N^{*}_{F_{l}}(u_{2})\cap\cdots\cap N^{*}_{F_{l}}(u_{k})\cap N^{*}_{F_{l}}(v_{1})\\ \cap\cdots\cap N^{*}_{F_{l}}(v_{l-1}))\cup N^{*}(u_{1})\cap N^{*}(u_{2})\cap\cdots \cap N^{*}(u_{k})\cap N^{*}(v_{1})\cap\cdots \cap N^{*}(v_{l}). $

由任意维超平面残差图的性质也可以得到$m$重任意维超平面残差图的性质.

引理5.3  若$G$$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $H=HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1), n_{1}, n_{2}, $ $\cdots, n_{r}\geq r\geq 3$.令$\{v_{1}, v_{2}, \cdots, v_{k}\}\subset V(G)$以及$\{u_{1}, u_{2}, \cdots, $ $u_{k}\}\subset V(H)$分别是$G$$H$中的$k$ -独立集, 则有

$ |N^{*}_{G}(v_{1})\cap N^{*}_{G}(v_{2})\cap\cdots\cap N^{*}_{G}(v_{k})|\geq|N^{*}_{H}(u_{1})\cap N^{*}_{H}(u_{2})\cap\cdots\cap N^{*}_{H}(u_{k})|. $

  当$k\geq r+1$, 由引理3.3可知

$ N^{*}_{H}(u_{1})\cap N^{*}_{H}(u_{2})\cap\cdots\cap N^{*}_{H}(u_{k})=\phi, $

则上面不等式成立.下面假设$1\leq k\leq r$, 则存在$v\in G$$u\in H$, 且有$\{v_{1}, v_{2}, \cdots, v_{k}, v\}$ $\{u_{1}, u_{2}, \cdots, u_{k}, u\}$分别是$G$$H$$(k+1)$ -独立集.设$G_{1}=G-N^{*}(v)$, $H_{1}=H-N^{*}(u)$, 则有$G_{1}\cong H_{1}\cong HPK(n_{1}, n_{2}, \cdots, n_{r})$, $\{v_{1}, v_{2}, \cdots, v_{k}\}\subset V(G_{1})$以及$\{u_{1}, u_{2}, \cdots, u_{k}\}\subset V(H_{1})$分别是$G_{1}$$H_{1}$$k$ -独立集, 且有

$ |N^{*}_{G}(v_{1})\cap N^{*}_{G}(v_{2})\cap\cdots\cap N^{*}_{G}(v_{k})|=|N^{*}_{G_{1}}(v_{1})\cap N^{*}_{G_{1}}(v_{2})\cap\cdots\cap N^{*}_{G_{1}}(v_{k})|\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +|N^{*}_{G}(v_{1})\cap\cdots\cap N^{*}_{G}(v_{k}) \cap N^{*}_{G}(v)|, \\ |N^{*}_{H}(u_{1})\cap N^{*}_{H}(u_{2})\cap\cdots\cap N^{*}_{H}(u_{k})|=|N^{*}_{H_{1}}(u_{1})\cap N^{*}_{H_{1}}(u_{2})\cap\cdots\cap N^{*}_{H_{1}}(u_{k})|\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +|N^{*}_{H}(u_{1})\cap\cdots\cap N^{*}_{H}(u_{k}) \cap N^{*}_{H}(u)|. $

因为$G_{1}\cong H_{1}\cong HPK(n_{1}, n_{2}, \cdots, n_{r})$, 由引理3.4知

$ |N^{*}_{G_{1}}(v_{1})\cap\cdots\cap N^{*}_{G_{1}}(v_{k})|=|N^{*}_{H_{1}}(u_{1})\cap\cdots\cap N^{*}_{H_{1}}(u_{k})|, $

由此可知当$k\geq r+1$, $k=r, r-1, \cdots, 3, 2, 1$.上面不定式成立的.

引理5.4  假设$G$$2-HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $H=HPK(n_{1}$ $+2, n_{2}+2, \cdots , n_{r}+2), n_{1}, n_{2}, \cdots, n_{r}\geq r\geq 3$ $\{v_{1}, v_{2}, \cdots, v_{k}\}\subset V(G)$$\{u_{1}, u_{2}, \cdots, u_{k}$ $\}\subset V(H)$分别是$G$$H$$k$ -独立集, 则有

$ |N^{*}_{G}(v_{1})\cap N^{*}_{G}(v_{2})\cap\cdots\cap N^{*}_{G}(v_{k})|\geq|N^{*}_{H}(v_{1})\cap N^{*}_{H}(v_{2})\cap\cdots\cap N^{*}_{H}(v_{k})|. $

  由引理3.3知, $k\geq r+1$不等式是显然成立的, 下面假设$1\leq k\leq r$, 根据引理5.3的讨论, 在$G$$H$中存在点$v\in G$, $u\in H$, 使得$G_{1}=G-N^{*}(v), H_{1}=H-N^{*}(u)$, 以及$\{v_{1}, v_{2}, \cdots, v_{k}\}\subset V(G_{1})$$\{u_{1}, u_{2}, \cdots, u_{k}\}\subset V(H_{1})$.因为$G_{1}$$HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, 以及$H_{1}=HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1)$, 因此当$k\geq r+1$不等式成立, $k=r, r-1, \cdots, 3, 2, 1$.

引理5.5  假设$G$$m-HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $H=HPK(n_{1}+m, n_{2}+m, \cdots , n_{r}+m), n_{1}, n_{2}, \cdots, n_{r}\geq r\geq 3$, $\{v_{1}, v_{2}, \cdots, v_{r}\}\subset V(G)$$\{u_{1}, u_{2}, \cdots, u_{k}\}\subset V(H)$分别是$G$$H$$k$ -独立集, 则有$|N^{*}_{G}(v_{1})\cap\cdots\cap N^{*}_{G}(v_{k})|\geq|N^{*}_{H}(u_{1})\cap\cdots\cap N^{*}_{H}(u_{k})|$.

  当$m=1, 2$, 有引理5.3和引理5.4知成立的.下面对$m$用数学归纳法证明, 假设对$m-1$成立, 由引理3.3可知$k\geq r+1$时, 不等式成立, 讨论与引理5.3, 5.4的讨论一样可以得到, 对于$m$, $k\geq r+1$, $k=r, r-1, \cdots, 3, 2, 1$是成立的.

定理5.1  假设$G$$m-HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $n_{1}, n_{2}, \cdots, n_{r}\geq r\geq3$, 则有$\nu(G)\geq (n_{1}+m)(n_{2}+m)\cdots (n_{r}+m)$.

  当$m=1$, 由定理3.1可知, 结论成立.利用数学归纳法, 假设当$m-1\geq1$成立, 当为$m$时, $G$$m-HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $H=HPK(n_{1}+m, n_{2}+m, \cdots, n_{r}+m)$.由引理5.4知, $|N^{*}_{G}(v)|\geq N^{*}_{H}(u)$, 对于$G$$H$中的任意一点$v\in G$, $u\in H$.设$G_{1}=G-N^{*}(v), H_{1}=H-N^{*}(u)$, 则有$G_{1}$$(m-1)-HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, 故有

$ H_{1}=HPK(n_{1}+m-1, n_{2}+m-1, \cdots, n_{r}+m-1). $

利用归纳假设有

$ \nu(G)=\nu(G_{1})+|N^{*}_{G}(v)|\geq \nu(H_{1})+|N^{*}_{H}(u)|=\nu(H)=(n_{1}+m)(n_{2}+m)\cdots(n_{r}+m). $

定理5.2  假设$G$$m-HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $n_{1}, n_{2}, \cdots, $ $n_{r}\geq r\geq3$, 以及$\nu(G)= (n_{1}+m)(n_{2}+m)\cdots (n_{r}+m)$, 则有$G\cong HPK(n_{1}+m, n_{2}+m, \cdots, n_{r}+m).$

  设$G$$m-HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, $H=HPK(n_{1}+m, n_{2}+m, \cdots, n_{r}+m), n_{1}, n_{2}, \cdots, n_{r}\geq r\geq3$, $\nu(G)=\nu(H)$.当$m=1$时, 由定理3.2可知, $G\cong HPK(n_{1}+1, n_{2}+1, \cdots, n_{r}+1)$.利用数学归纳法, 假设$m-1\geq1$成立.对于m, 存在点$v\in G$$u\in H$, 有$G_{1}=G-N^{*}(v)$$(m-1)-HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图, 以及$H_{1}=H-N^{*}(u)=HPK(n_{1}+m-1, \cdots, n_{r}+m-1)$.再由引理5.5定理5.1, 有

$ |N^{*}_{G}(v)|\geq|N^{*}_{H}(u)|=\nu(H)-\nu(H_{1}), \nu(G_{1}\geq \nu(H_{1}), \\ \nu(G_{1})=\nu(G)-|N^{*}_{G}(v)|\leq \nu(G)-|N^{*}_{H}(u)|=\nu(H)-|N^{*}_{H}(u)|=\nu(H_{1}), \\ \nu(G_{1})=\nu(H_{1})=(n_{1}+m-1)(n_{2}+m-1)\cdots(n_{r}+m-1), $

因此有$G_{1}$是最小阶的$(m-1)-HPK(n_{1}, n_{2}, \cdots, n_{r})$ -残差图.根据归纳假设有$G_{1}\cong HPK(n_{1}+m-1, n_{2}+m-1, \cdots, n_{r}+m-1)$.由于$v$$G$中任意一点, 根据定义2.2知, $G$是最小阶的$ HPK(n_{1}+m-1, n_{2}+m-1, \cdots, n_{r}+m-1)$ -残差图, 设$n_{i}^{'}=n_{i}+m-1\geq n_{i}\geq r\geq3, i=1, 2, \cdots, r$, 由定理3.2可知$G\cong HPK(n_{1}+m, n_{2}+m, \cdots, n_{r}+m)$.证毕.

参考文献
[1] Erdös P, Harary F, Klawe M. Residually-complete graphs[J]. Ann. Disc. Math, 1980, 6: 117–123. DOI:10.1016/S0167-5060(08)70698-8
[2] 杨世辉, 段辉明. 奇阶完备残差图[J]. 应用数学学报, 2011, 34(5): 778–785.
[3] Liao J, Yang S, Deng Y. On connected 2-Kn-residual graphs[J]. Mediterranean J. Math, 2012, 6: 12–27.
[4] 段辉明, 曾波, 窦智. 连通的三重Kn-残差图[J]. 运筹学学报, 2014, 18: 59–68.
[5] Liao J, Long G, Li M. Erdös conjecture on connected residual graphs[J]. J. Comput, 2012, 7: 1497–1502.
[6] Michael Holusa. Image segmentation using iterated graph cuts with residual graph[J]. Eduard Sojka Adv. Vis. Comput, 2013, 1: 228–237.
[7] Trotta B. Residual properties of simple graphs[J]. Bull. Austr. Math. Soc, 2010, 82: 488–504. DOI:10.1017/S0004972710000420
[8] 段辉明, 曾波, 李永红. 关于m-HPK(n1; n2; n3; n4)-残差图[J]. 数学杂志, 2014, 34(2): 324–334.
[9] Duan H. On connected m multiply 2 dimensions composite hyperplanne complete graph's residual graphs[J]. J. Discrete Math. Sci. Crytography, 2014, 16: 313–328.
[10] Yang H S. The isomorphic factorization of complete tripartite graphs K(m; n; s)-a proof of F. Harary, R. W. Robinson and N. C. Wormald's conjecture[[J]. Disc. Math, 1995, 145(1-3): 239–257. DOI:10.1016/0012-365X(94)00039-L
[11] Liang Z, Zuo H. On the gracefulness of the graph[J]. Appl. Anal. Discrete Math, 2010, 10: 175–180.