数学杂志  2017, Vol. 37 Issue (4): 761-768   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
LIU Xin-ling
LIU Kai
THE GROWTH ON ENTIRE SOLUTIONS OF FERMAT TYPE Q-DIFFERENCE DIFFERENTIAL EQUATIONS
LIU Xin-ling, LIU Kai     
Department of Mathematics, Nanchang University, Nanchang 330031, China
Abstract: This paper is devoted to consider the entire solutions on Fermat type q-difierence difierential equations. Using the classical and difierence Nevanlinna theory and functional equations theory, we obtain some results on the growth of the Fermat type q-difierence difierential equations.
Key words: q-difierence difierential equations     entire solutions     flnite order    
费马q-差分微分方程整函数解的增长性研究
刘新玲, 刘凯     
南昌大学数学系, 江西 南昌 330031
摘要:本文研究了费马q-差分微分方程的整函数解的相关问题.利用经典和差分的Nevanlinna理论和函数方程理论的研究方法,获得了q-差分微分方程整函数解增长性的几个结果.
关键词q-差分微分方程    整函数解    有穷级    
1 Introduction

Let $f(z)$ be a meromorphic function in the complex plane. We assume that the reader is familiar with standard symbols and fundamental results of Nevanlinna theory [5,16]. As we all know that Nevanlinna theory was extensively applied to considering the growth, value distribution, and solvability of meromorphic solutions of differential equations [6]. Recently, difference analogues of Nevanlinna theory were established, which also be used to consider the corresponding properties of meromorphic solutions on difference equations or $q$-difference equations, such as [2, 4, 7-12, 14, 17].

Let us recall the classical Fermat type equation

$ \begin{equation} f(z)^{2}+g(z)^{2}=1. \end{equation} $ (1.1)

Equation (1.1) has the entire solutions $f(z)=\sin(h(z))$ and $g(z)=\cos(h(z))$, where $h(z)$ is any entire function, no other solutions exist. However, the above result fails to give more precise informations when $g(z)$ has a special relationship with $f(z)$. Yang and Li [15] first considered the entire solutions of the Fermat type differential equation

$ \begin{equation} f(z)^{2}+f'(z)^{2}=1, \end{equation} $ (1.2)

and they proved the following result.

Theorem A  [15, Theorem 1] The transcendental meromorphic solutions of (1.2) must satisfy $f(z)=\frac{1}{2}\left(Pe^{-i z}+\frac{1}{P}e^{iz}\right)=\sin(z+B)$, where $P$ is non-zero constant and $e^{iB}=\frac{i}{P}$.

Tang and Liao [13] further investigated the entire solutions of a generalization of (1.2) as follows

$ \begin{equation} f(z)^{2}+P(z)^{2}f^{(k)}(z)^{2}=Q(z), \end{equation} $ (1.3)

where $P(z), Q(z)$ are non-zero polynomials and obtained the next result.

Theorem B  [13, Theorem 1] If the differential equation (1.3) has a transcendental meromorphic solution $f$, then $P(z)\equiv A$, $Q(z)\equiv B$, $k$ is an odd and $f(z)=b\sin(az+d)$, where $a, b, d$ are constants such that $Aa^{k}=\pm1$, $b^{2}=B$.

Recently, the difference analogues of Nevanlinna theory were used to consider the solutions properties of Fermat type difference equations. Liu, Cao and Cao [8] investigated the finite order entire solutions of the difference equation

$ \begin{equation} f(z)^{2}+f(z+c)^{2}=1, \end{equation} $ (1.4)

here and in the following, $c$ is a non-zero constant and $P(z), Q(z)$ are non-zero polynomial, unless otherwise specified. The result can be stated as follows.

Theorem C  [8, Theorem 1.1] The transcendental entire solutions with finite order of $(1.4)$ must satisfy $f(z)=\sin(Az+B)$, where $B$ is a constant and $A=\frac{(4k+1)\pi}{2c}$, $k$ is an integer.

Furthermore, Liu and Yang [10] considered a generalization of (1.4) as follows

$ \begin{equation} f(z)^{2}+P(z)^{2}f(z+c)^{2}=Q(z), \end{equation} $ (1.5)

and obtained the following result.

Theorem D  Let $P(z)$, $Q(z)$ be non-zero polynomials. If the difference equation (1.5) admits a transcendental entire solution of finite order, then $P(z)\equiv\pm1$ and $Q(z)$ reduces to a constant $q$.

If an equation includes the $q$-difference $f(qz)$ and the derivatives of $f(z)$ or $f(z+c)$, then this equation can be called $q$-difference differential equation. Liu and Cao [11] considered the entire solutions on Fermat type $q$-difference differential equation

$ \begin{equation} f'(z)^{2}+f(qz)^{2}=1, \end{equation} $ (1.6)

and obtained the following result.

Theorem E  [11, Theorem 3.1]The transcendental entire solutions with finite order of (1.6) must satisfy $f(z)=\sin(z+B)$ when $q=1$, and $f(z)=\sin(z+k\pi)$ or $f(z)=-\sin(z+k\pi+\frac{\pi}{2})$ when $q=-1$. There are no transcendental entire solutions with finite order when $q\not=\pm1$.

By comparing with the above five theorems, we state the following questions which will be considered in this paper.

Question 1  From Theorem A to Theorem E, we remark that the order of all transcendental entire solutions with finite order of different equations are equal to one. Hence, considering a generalization of equation (1.6), such as

$ \begin{equation} f'(z)^{2}+P(z)^{2}f(qz)^{2}=Q(z), \end{equation} $ (1.7)

it is natural to ask if the finite order of the entire solutions of (1.7) is equal to one or not?

Question 2  From Theorem B to Theorem E, the existence of finite order entire solutions of (1.3) and (1.5) forces the polynomial $P(z)$ reduce to a constant. Is it also remain valid for equation (1.7)?

However, Examples 1 and 2 below show that Questions 1 and 2 are false in generally.

Example 1  Entire function $f(z)=\sin z^{n}$ solves

$ f'(z)^{2}+n^{2}z^{2(n-1)}f(qz)^{2}=n^{2}z^{2(n-1)}, $

where $q$ satisfies $q^{n}=1$. It implies that the solutions order of (1.7) may take arbitrary numbers and $P(z)^{2}=n^{2}z^{2(n-1)}$ is not a constant.

Example 2  We can construct a general solution from Example 1. Entire function $f(z)=\sin (h(z))$ solves

$ f'(z)^{2}+[h'(z)]^{2}f(qz)^{2}=[h'(z)]^{2}, $

where $q$ satisfies $q^{n}=1$ and $h(z)$ is a non-constant polynomial.

Example 3  Function $f(z)=\sinh z$ is also an entire solution of $f'(z)^{2}-f(qz)^{2}=1$ and $f(z)=\cosh z$ is an entire solution of $f'(z)^{2}-f(qz)^{2}=-1$, where $q=-1$.

From Example 1 to Example 3, we also remark that if $P(z)^{2}=\pm1$, the transcendental entire solutions $f(z)$ are of order one, if $P(z)=nz^{(n-1)}$, the transcendental entire solutions $f(z)$ are of order $n$. Hence, it is reasonable to conjecture that the order of entire solutions of $(1.7)$ is equal to $\rho(f)=1+\deg{P(z)}$. In this paper, we will answer the above conjecture and obtain the following result.

Theorem 1.1  If $|q|>1$, then the entire solution of $(1.7)$ should be a polynomial. If there exists a finite order transcendental entire solution $f$ of $(1.7)$, then $\rho(f)=1+\deg{P(z)}$ and $|q|=1$.

In the following, we will consider another $q$-difference differential equation

$ \begin{equation} f'(z+c)^{2}+P(z)^{2}f(qz)^{2}=Q(z), \end{equation} $ (1.8)

and obtain the following result.

Theorem 1.2  If $|q|>1$, then the entire solution of $(1.8)$ should be a polynomial. If there exist a finite order transcendental entire solution $f$ of $(1.8)$, then $\rho(f)=1+\deg{P(z)}$ and $|q|=1$.

Example 4  Function $f(z)=\sin z$ is an entire solution of $f'(z+c)^{2}+f(qz)^{2}=1$, where $c=\pi$ and $q=-1$.

Finally, we consider other $q$-difference equation

$ \begin{equation} f(z+c)^{2}+P(z)^{2}f(qz)^{2}=Q(z). \end{equation} $ (1.9)

Theorem 1.3  If $|q|>1$, then the entire solution $f(z)$ of $(1.9)$ should be a polynomial.

If $P(z)^{2}=1$ in $(1.9)$, the following example shows that we can not give the precise expression of finite order entire solution and the order of $f(z)$ does not satisfy $\rho(f)=1+\deg{P(z)}$ and $|q|=1$.

Example 5   [11] If $q=-1$, $c=\frac{\pi}{2}$, thus $f(z)=\sin z$ satisfies $f(z+\frac{\pi}{2})^{2}+f(-z)^{2}=1.$ If $q=\frac{1+i\sqrt{3}}{2}$, $c=\frac{1-i\sqrt{3}}{2}$, and $p(z)=\frac{1}{3}z^{3}+z^{2}+z+\frac{3i}{4}\pi+\frac{1}{3}+ki\pi$, thus

$ p(z+\frac{c}{q})+p(qz)=\frac{3i\pi}{2}+2ki\pi $

and $k$ is an integer. Thus

$ f(z)=\frac{e^{p(z-\frac{1-i\sqrt{3}}{2})}-e^{-p(z-\frac{1-i\sqrt{3}}{2})}}{2} $

satisfies

$ f(z+\frac{1-i\sqrt{3}}{2})^{2}+f(\frac{1+i\sqrt{3}}{2}z)^{2}=1. $

Remark 1  The proofs of Theorem 1.2 and Theorem 1.3 are similar as the proof of Theorem 1.1. Hence we will not give the details here.

2 Some Lemmas

For the proofs of Theorems 1.1, 1.2 and 1.3, we need the following results.

Lemma 2.1  [3, Lemma 3.1] Let $\Phi: (1, \infty)\rightarrow (0, \infty)$ be a monotone increasing function, and let $f$ be a nonconstant meromorphic function. If for some real constant $\alpha\in(0, 1)$, there exist real constants $K_{1}>0$ and $K_{2}\geq1$ such that

$ T(r, f)\leq K_{1}\Phi(\alpha r)+K_{2}T(\alpha r, f)+S(\alpha r, f), $

then

$ \rho(f)\leq\frac{\log K_{2}}{-\log \alpha}+\lim\sup\limits_{r\rightarrow\infty}\frac{\log\Phi(r)}{\log r}. $

Lemma 2.2  [11, Lemma 2.15] Let $p(z)$ be a non-zero polynomial with degree $n$. If $p(qz)-p(z)$ is a constant, then $q^{n}=1$ and $p(qz)\equiv p(z)$. If $p(qz)+p(z)$ is a constant, then $q^{n}=-1$ and $p(qz)+p(z)\equiv2a_{0}$, where $a_{0}$ is the constant term of $p(z)$.

Lemma 2.3  [2, Theorem 2.1] Let $f(z)$ be transcendental meromorphic function of finite order $\rho$. Then for any $\varepsilon>0$, we have

$ \begin{equation} T(r, f(z+c))=T(r, f)+O(r^{\rho-1+\varepsilon})+O(\log r)=T(r, f)+S(r, f). \end{equation} $ (2.1)

Lemma 2.4  [16, Theorem 1.62] Let $f_{j}(z)$ be meromorphic functions, $f_{k}(z)$ $(k=1, 2, \cdots, n-1)$ be not constants, satisfying $\sum\limits_{j=1}^{n}f_{j}=1$ and $n\geq3$. If $f_{n}(z)\not\equiv0$ and

$ \begin{eqnarray*}\sum\limits_{j=1}^{n}N(r, \frac{1}{f_{j}})+(n-1)\sum\limits_{j=1}^{n}\overline{N}(r, f_{j}) < (\lambda+o(1))T(r, f_{k}), \end{eqnarray*} $

where $\lambda < 1$ and $k=1, 2, \cdots, n-1$, then $f_{n}(z)\equiv1$.

3 Proof of Theorem 1.1

If $|q|>1$ and $f(z)$ is an entire solution of $(1.7)$, we use the observation (see [1]) that

$ T(r, f(qz))=T(|q|r, f(z))+O(1) $

holds for any meromorphic function $f$ and any constant $q$. If $f(z)$ is a transcendental entire function, then from (1.7) and Valiron-Mohon'ko theorem, we have

$ T(|q|r, f(z))=T(r, f(qz))+O(1)\leq T(r, f'(z))+S(r, f)\leq T(r, f(z))+S(r, f). $

Let $\alpha=\frac{1}{|q|}$ and $|q|>1$. Then we have

$ T(|q|\alpha r, f(z))\leq T(\alpha r, f(z))+S(\alpha r, f(z)). $

Hence, we have $T(r, f(z))\leq T(\alpha r, f(z))+S(\alpha r, f(z))$. From Lemma 2.1, we have $\rho(f)=0$. Combining Hadamard factorization theorem, we have $f'(z)+iP(z)f(qz)=Q_{1}(z)$ and $f'(z)-iP(z)f(qz)=Q_{2}(z)$, thus $f'(z)=\frac{Q_{1}(z)+Q_{2}(z)}{2}$ is a polynomial, which is a contradiction with $f(z)$ is a transcendental entire function. Thus $f(z)$ should be a polynomial.

Assume that $f(z)$ is a transcendental entire solution of (1.7) with finite order, then

$ \begin{equation} [f'(z)+iP(z)f(qz)][f'(z)-iP(z)f(qz)]=Q(z). \end{equation} $ (3.1)

Thus both $f'(z)+iP(z)f(qz)$ and $f'(z)-iP(z)f(qz)$ have finitely many zeros. Combining (3.1) with the Hadamard factorization theorem, we assume that

$ f'(z)+iP(z)f(qz)=Q_{1}(z)e^{h(z)} $

and

$ f'(z)-iP(z)f(qz)=Q_{2}(z)e^{-h(z)}, $

where $h(z)$ is a non-constant polynomial provided that $f(z)$ is of finite order transcendental and $Q_{1}(z)Q_{2}(z)=Q(z)$, where $Q_{1}(z)$, $Q_{2}(z)$ are non-zero polynomials. Thus we have

$ \begin{equation} f'(z)=\frac{Q_{1}(z)e^{h(z)}+Q_{2}(z)e^{-h(z)}}{2} \end{equation} $ (3.2)

and

$ \begin{equation} f(qz)=\frac{Q_{1}(z)e^{h(z)}-Q_{2}(z)e^{-h(z)}}{2iP(z)}. \end{equation} $ (3.3)

From (3.2), we have

$ \begin{equation} f'(qz)=\frac{Q_{1}(qz)e^{h(qz)}+Q_{2}(qz)e^{-h(qz)}}{2}. \end{equation} $ (3.4)

Taking first derivative of (3.3), we have

$ \begin{equation} f'(qz)=\frac{A(z)e^{h(z)}-B(z)e^{-h(z)}}{2iqP(z)^{2}}, \end{equation} $ (3.5)

where

$ \begin{equation} A(z)=P(z)Q_{1}'(z)+Q_{1}(z)[P(z)h'(z)-P'(z)] \end{equation} $ (3.6)

and

$ \begin{equation} B(z)=P(z)Q_{2}'(z)-Q_{2}(z)[P(z)h'(z)+P'(z)]. \end{equation} $ (3.7)

From (3.4) and (3.5), we have

$ \begin{equation} \frac{A(z)e^{h(qz)+h(z)}}{iqP(z)^{2}Q_{2}(qz)}-\frac{B(z)e^{h(qz)-h(z)}}{iqP(z)^{2}Q_{2}(qz)}-\frac{Q_{1}(qz)}{Q_{2}(qz)}e^{2h(qz)}\equiv1. \end{equation} $ (3.8)

Obviously, if $h(qz)$ is a constant, then $h(z)$ is a constant, thus $f(z)$ should be a polynomial. If $h(qz)$ is a non-constant entire function, then $h(qz)-h(z)$ and $h(qz)+h(z)$ are not constants simultaneously. The following, we will discuss two cases.

Case 1  If $h(qz)-h(z)$ is not a constant, from Lemma 2.4, we know that

$ \begin{equation} \frac{A(z)e^{h(qz)+h(z)}}{iqP(z)^{2}Q_{2}(qz)}\equiv1. \end{equation} $ (3.9)

Since $f(z)$ is a finite order entire solution, then $h(z)$ should satisfies $h(z)=a_{n}z^{n}+\cdots+a_{0}$ is a non-constant polynomial, thus $|q|=1$ follows for avoiding a contradiction. From Lemma 2.2, we have $h(qz)+h(z)=2a_{0}$. Hence, we have

$ \begin{equation} A(z)=iqP(z)^{2}Q_{2}(qz)e^{-2a_{0}}. \end{equation} $ (3.10)

In addition, from (3.8), we also get

$ \begin{equation} \frac{B(z)e^{h(qz)-h(z)}}{iqP(z)^{2}Q_{2}(qz)}+\frac{Q_{1}(qz)}{Q_{2}(qz)}e^{2h(qz)}\equiv 0, \end{equation} $ (3.11)

which implies that

$ \begin{equation} B(z)=-iqQ_{1}(qz)P(z)^{2}e^{2a_{0}}. \end{equation} $ (3.12)

Thus

$ \begin{equation} A(z)B(z)=q^{2}P(z)^{4}Q(qz). \end{equation} $ (3.13)

Substitute (3.6) and (3.7) into (3.13), we have

$ \begin{eqnarray} &&\{P(z)Q_{1}'(z)+Q_{1}(z)[P(z)h'(z)-P'(z)]\}\{P(z)Q_{2}'(z)-Q_{2}(z)[P(z)h'(z)+P'(z)]\}\nonumber\\ &=&q^{2}P(z)^{4}Q(qz). \end{eqnarray} $ (3.14)

Since $f(z)$ is a finite order entire solution, by comparing with the degree of both hand side of (3.14), we have

$ \deg(h(z))=1+\deg{P(z)}. $

It implies that $\rho(f)=1+\deg{P(z)}$.

Case 2  If $h(qz)+h(z)$ is not a constant, from Lemma 2.4, we know that

$ -\frac{B(z)e^{h(qz)-h(z)}}{iqP(z)^{2}Q_{2}(qz)}\equiv1. $

Hence $|q|=1$ follows for avoiding a contradiction. Assume that $h(z)=a_{n}z^{n}+\cdots+a_{0}$, thus $h(qz)=h(z)$. Hence we have

$ \begin{equation} -B(z)=iqP(z)^{2}Q_{2}(qz). \end{equation} $ (3.15)

In addition, from (3.8), we also get

$ \begin{equation} A(z)=iqQ_{1}(qz)P(z)^{2}. \end{equation} $ (3.16)

Thus, similar as the above, we also get $\rho(f)=1+\deg{P(z)}$.

References
[1] Bergweiler W, Ishizaki K, Yanagihara N. Meromorphic solutions of some functional equations[J]. Meth. Appl. Anal, 1998, 5: 248–258.
[2] Chiang Y M, Feng S J. On the Nevanlinna characteristic of f(z+η) and difierence equations in the complex plane[J]. Ramanujan. J., 2008, 16: 105–129. DOI:10.1007/s11139-007-9101-1
[3] Gundensen G, Heittokangas J, Laine I, Rieppo J, Yang D G. Meromorphic solutions of generalized Schröder equations[J]. Aequations Math., 2002, 63: 110–135. DOI:10.1007/s00010-002-8010-z
[4] Halburd R G, Korhonen R J. Difierence analogue of the lemma on the logarithmic derivative with applications to difierence equations[J]. J. Math. Anal. Appl., 2006, 314: 477–487. DOI:10.1016/j.jmaa.2005.04.010
[5] Hayman W K. Meromorphic functions[M]. Oxford: Clarendon Press, 1964.
[6] Laine I. Nevanlinna theory and complex difierential equations[M]. Berlin: Walter de Gruyter, 1993.
[7] Liu K. Meromorphic functions sharing a set with applications to difierence equations[J]. J. Math. Anal. Appl., 2009, 359: 384–393. DOI:10.1016/j.jmaa.2009.05.061
[8] Liu K, Cao T B, Cao H Z. Entire solutions of Fermat type difierential-difierence equations[J]. Arch. Math., 2012, 99: 147–155. DOI:10.1007/s00013-012-0408-9
[9] Liu K, Yang L Z, Liu X L. Existence of entire solutions of nonlinear difierence equations[J]. Czech. Math. J., 2011, 61(2): 565–576. DOI:10.1007/s10587-011-0075-1
[10] Liu K, Yang L Z. On entire solutions of some difierential-difierence equations[J]. Comput. Meth. Funct. Theory, 2013, 13: 433–447. DOI:10.1007/s40315-013-0030-2
[11] Liu K, Cao T B. Entire solutions of Fermat type difierence difierential equations[J]. Electron. J. Difi. Equ., 2013, 2013: 1–10. DOI:10.1186/1687-1847-2013-1
[12] Liu K, Yang L Z. Some results on complex difierential-difierence theory[J]. J. Math., 2013, 33(5): 830–836.
[13] Tang J F, Liao L W. The transcendental meromorphic solutions of a certain type of nonlinear difierential equations[J]. J. Math. Anal. Appl., 2007, 334: 517–527. DOI:10.1016/j.jmaa.2006.12.075
[14] Yang C C, Laine I. On analogies between nonlinear difierence and difierential equations[J]. Proc. Japan Acad., Ser. A, 2010, 86: 10–14. DOI:10.3792/pjaa.86.10
[15] Yang C C, Li P. On the transcendental solutions of a certain type of nonlinear difierential equations[J]. Arch. Math., 2004, 82: 442–448.
[16] Yang C C, Yi H X. Uniqueness theory of meromorphic functions[M]. Nederland: Kluwer Academic Publishers, 2003.
[17] Zhang J L, Korhonen R J. On the Nevanlinna characteristic of f(qz) and its applications[J]. J. Math. Anal. Appl., 2010, 369: 537–544. DOI:10.1016/j.jmaa.2010.03.038