数学杂志  2016, Vol. 36 Issue (6): 1231-1237   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
李余辉
Hölder范数下关于Brown运动增量的泛函局部收敛速度
李余辉    
桂林电子科技大学数学与计算科学学院, 广西 桂林 541004
摘要:本文研究了Brown运动在Hölder范数与容度下的泛函极限问题.利用大偏差小偏差方法, 获得了Brown运动增量局部泛函极限的收敛速度, 推广了文[4]中的结果.
关键词Brown运动    收敛速度    Hölder范数    容度    
THE RATE OF LOCAL FUNCTIONAL CONVERGENCE FOR BROWNIAN MOTION'S INCREMENTS IN HOLDER NORM
LI Yu-hui    
School of Mathematics and Computing Science, Guilin University of Electric and Technology, Guilin 541004, China
Abstract: In this paper, the local functional limit theorem for increments of a Brownian motion is derived. With large and small deviations, the local functional convergence rate for increments of Brownian motion in Hölder norm with respect to capacity is estimated, and the result in[4] is generalized.
Key words: Brownian motion     convergence rate     Hölder norm     capacity    
1 引言

考虑经典的Wiener空间$(B, H, \mu)$, 设$D^{r, p}$是Wiener泛函的Sobolev空间, 即

$\;\;D^{r, p}=(1-\mathcal{L})^{-\frac{r}{2}}\mathbf{L}^p, \|F\|_{r, p}=\|(1-\mathcal{L})^{r/2}F\|_p, F\in \mathbf{L}^p, r\geqslant 0, 1\leqslant p<\infty, $

其中$\mathbf{L}^p$记为$(B, \mu )$上的实值函数的$L^p$空间, $\mathcal L$$(B, H, \mu)$上的Ornstein-Uhlenbeck算子.对$r\geqslant 0, p>1$, $(r, p)$-容度定义如下

$\;\;C_{r, p}(O)=\inf\{\|F\|_{r, p}^p; F\in D_{r, p}, F\geqslant1, \mu-{\rm{a.s.}}\mbox{在}O \mbox{上}\}, \quad \mbox{对开集} O\subset B, $

且对任意集合$A\subset B$有, $C_{r, p}(A)=\inf\{C_{r, p}(O);A\subset O\subset B, O\mbox{是开集}\}.$${\mathcal{C}}^d$为从[0, 1]到$\mathbb{R}^d$的连续函数空间, 赋予上确界范数$\|f\|=\sup\limits_{0\leqslant t \leqslant 1}|f(t)|$.记$\mathcal C^d_0=\{f\in \mathcal C^d; f(0)= 0\}$, $\mathcal H^d=\{f\in\mathcal C^d_0; f(t)=\displaystyle\int _0^t \dot {f}(s)ds, \|f\|_{\mathcal H^d}^2=\displaystyle\int_0^1|\dot{f}(t)|^2dt<\infty \}$, $\mathcal{H}^d$是一定义如下内积的Hilbert空间, $\langle r_1, r_2\rangle_{\mathcal{H}^d}=\displaystyle\int^1_0(\dot{r}_1(s), \dot{r}_2(s))ds$.设$\mu$$\mathcal{C}^d_0$上的Wiener测度, $(\mathcal{C}^d_0, \mathcal{H}^d, \mu)$是一经典Wiener空间.下面考虑如下两个Banach空间

$ \;\;\;{\mathcal{C}}^\alpha =\{f\in {\mathcal{C}}_0^d; \|f(\cdot)\|_\alpha =\mathop{\sup}\limits_{\mathop {s,~t\in [0,1]}\limits_{s\neq t}}\frac{|f(t)-f(s)|}{|t-s|^\alpha}<\infty\},\\ \;\;\;{\mathcal{C}}^{\alpha,~ 0}=\{f\in {\mathcal{C}}^\alpha; \mathop{\lim}\limits_{ \delta\rightarrow 0}\mathop{\sup}\limits_{\mathop{s,~t\in [0,1]}\limits_{0<|t-s|<\delta}}\frac{|f(t)-f(s)|}{|t-s|^\alpha} =0\}, $

其中$0<\alpha<\frac{1}{2}$.则有$(\mathcal{C}^{\alpha, 0}, \mathcal{H}^d, \mu)$也是一经典Wiener空间(见文[2]定理2.4).设$w\in{\mathcal{C}}^{\alpha, 0}$为一标准Brown运动, 记$K=\{f\in\mathcal{H}^{d}; I(f)\leqslant 1\}$, 其中$I: B\to [0, \infty]$定义为若$z\in \mathcal{H}^d$, $I(z)=\|z\|^2_{\mathcal{H}^d}/2$; 否则$I(z)=\infty$.

自从Yoshida[1]首先得到了关于容度$C_{r, p}$意义的大偏差结论, 近年来关于Brown运动在Hölder范数下的拟必然泛函极限理论开始受到关注.Baldi与Roynette[2]利用大偏差得到了Brown运动在Hölder范数下的收敛速度, 并证明了存在$k=k(\alpha)\geq0$, 使得

$\;\;\mathop{\lim}\limits_{\varepsilon\rightarrow 0}\varepsilon^{2/(1-2\alpha)}\log P\{\| w\|_\alpha \leq \varepsilon\}=-k.$ (1)

进一步, 对任意$f\in K$$\gamma=(1-2\alpha)/2$

$\;\;\mathop{\lim}\limits_{\varepsilon\rightarrow 0}\varepsilon^{1/\gamma}\log P\left(\left\|w-\frac{f} {\varepsilon^{1/(2\gamma)}}\right\|_\alpha \le r\varepsilon\right)=-I(f)-\frac{k}{r^{1/\gamma}}.$ (2)

后来, Chen与Balakrishnan [3]得到Brown运动在Hölder范数与容度$C_{r, p}$意义下泛函重对数律的极限定理.本文利用Hölder范数下的大偏差小偏差, 得到了Brown运动增量在Hölder范数下, 关于容度$C_{r, p}$意义下局部泛函极限的收敛速度.主要结果如下.

定理1  设$r_u$定义为从$R^+$$R^+$的单调不减函数, 满足$0<r_u\le u$$u/r_u$单调不减.记$\sigma_u=\log\frac{u\log u}{r_u}, $$\lim\limits_{u\to\infty}\frac{\log(u/r_u)}{\log u}=\infty$, 则在$C_{r, p}$-q.s.意义下有

$\;\;\label{eq002}\mathop{\lim}\limits_{u\to \infty}\left(\sigma_u\right)^{1-\alpha}\mathop{\inf}\limits_{t\in [0, 1-\frac{r_u}{u}]}\|\left(r_u\sigma_u\right)^{-1/2} (w(ut+r_u\cdot)-w(ut))\|_\alpha=k^{\gamma}, \notag$

其中$\gamma=(1-2\alpha)/2$, $k>0$如式(1) 中所定义.

定理1的证明可由引理5与引理6得到, 在此之前叙述已有的相关结果.

2 定理1的证明

引理1  (见文献[3]定理2.1) 设$\{S_\varepsilon\}_{\varepsilon>0}$$\mathcal{C}^{\alpha, 0}$上一双射线性算子, 使得对任意$\varepsilon>0$$A\subset \mathcal{C}^{\alpha, 0}$$\mu(S^{-1}_{\varepsilon}A)=\mu(\varepsilon^{-1/2}A), $则对$(r, p)\in [0, \infty)\times(1, \infty), $

$\;\;-\mathop{\inf}\limits_{f\in \mathop{A}\limits^\circ}I(f)\leqslant \mathop{\underline{\lim}}\limits_{\varepsilon\to 0}\varepsilon \log C_{r, p}(S^{-1}_\varepsilon A)\leqslant \mathop{\overline{\lim}}\limits_{\varepsilon\to 0}\varepsilon \log C_{r, p}(S^{-1}_\varepsilon A)\leqslant-\mathop{\inf}\limits_{f\in\bar{A}}I(f).$

引理2  (见文献[6]引理2.1) 设$k\in\mathrm{N}$, $q_1, q_2\in(1, \infty)$满足$1/p=1/q_1+1/q_2$, 则存在常数$c=c(k, p, q_1, q_2)>0$使得对任意$-\infty<a_i<b_i<\infty$, $\delta\in (0, 1), $$F_i\in D^{k, kq_1}$有下式成立

$\begin{array}{*{20}{l}} {\;\;\;{C_{k,p}}{{\left( {\bigcap\limits_{i = 1}^n {\left\{ {{a_i} < {{\tilde F}_i}\left( z \right) < {b_i}} \right\}} } \right)}^{1/p}}}\\ { \le c{{\left( {\frac{n}{\delta }} \right)}^k}{{\left( {1 + \mathop {{\rm{max}}}\limits_{1 \le i \le n} \parallel {F_i}{\parallel _{k,k{q_1}}}} \right)}^k}\mu {{\left( {\bigcap\limits_{i = 1}^n {\left\{ {{a_i} - \delta < {F_i}\left( z \right) < {b_i} + \delta } \right\}} } \right)}^{1/{q_2}}},} \end{array}$

其中$\tilde{F_i}$$F_i$的拟连续修正.

引理3  设$k, p, q_1, q_2$如引理2中定义.对任意$\varepsilon>0, t_i\ge 0, h_i>0, i=1, 2, \cdots, n, $$f\in K$, 设

$\;\;F^{(i)}_\varepsilon(w)=\left\|\varepsilon\left(\frac{w(t_i+ h_i\cdot)-w(t_i)}{\sqrt{h_i}}\right)-f\right\|_\alpha, \quad$

则存在一常数$c=c(k, p, q_1, f)>0$, 对任意$\delta\in(0, 1], \varepsilon\in(0, 1]$, 有

$\begin{array}{l} \;\;\;{C_{k,p}}{\left( {\bigcap\limits_{i = 1}^n {\left\{ {z:{a_i} < F_\varepsilon ^{\left( i \right)}\left( z \right) < {b_i}} \right\}} } \right)^{\frac{1}{p}}}\\ \le c{\delta ^{ - 2{k^2} - k}}{n^k}\mu {\left( {\bigcap\limits_{i = 1}^n {\left\{ {z:{a_i} - \delta < F_\varepsilon ^{\left( i \right)}\left( z \right) < {b_i} + \delta } \right\}} } \right)^{\frac{1}{{{q_2}}}}} \cdot \end{array}$

  利用引理2, 类似文献[6]中引理2.2易证.

引理4  设$0 <\alpha <\frac{1}{2}, \, \gamma=\frac{1}{2}-\alpha$, $t\geq 0$, $f\in K$, $k>0$如(1) 中所定义, 则对任意$\tau>0$

$\;\;\mathop{\lim}\limits_{\varepsilon\to 0}\varepsilon^{1/\gamma}\log C_{r, p}\left(\left\|\frac{w(t+h\cdot)-w(t)}{\sqrt{h}}-\frac{f}{\varepsilon^{1/(2\gamma)}}\right\|_\alpha\le\varepsilon\tau\right)=-\frac{k}{\tau^{1/\gamma}}-I(f).$

  考虑到容度具有性质$C_{r, p}(\cdot)\ge \mu(\cdot)$, 结合(2) 式只需证明

$\;\;\mathop{\lim}\limits_{\varepsilon\to 0}\varepsilon^{1/\gamma}\log C_{r, p}\left(\left\|\frac{w(t+h\cdot)-w(t)}{\sqrt{h}}-\frac{f}{\varepsilon^{1/(2\gamma)}}\right\|_\alpha\le \varepsilon\tau\right)\leq-\frac{k}{\tau^{1/\gamma}}-I(f).$

对任意$1>\delta>0$, $c_0>0$, 令$k=[r]+1$, 根据引理3, 有

$\;\;\; \;\;\;C_{r, p}\left(\left\|\frac{w(t+h\cdot)-w(t)}{\sqrt{h}}-\frac{f}{\varepsilon^{1/(2\gamma)}}\right\|_\alpha \le \varepsilon\tau\right)^{1/p}\\\;\;\;\le c_0(\varepsilon^{1/(2\gamma)+1}\delta)^{-2k^2-k}\mu\left(\left\|\varepsilon^{1/(2\gamma)}\frac{w(t+h\cdot)-w(t)}{\sqrt{h}}-f\right\|_\alpha\le \varepsilon^{1/(2\gamma)+1}(\tau+\delta)\right)^{1/q_2}, $

再根据(2) 式得

$\;\;\; \;\;\; \mathop{\lim}\limits_{\varepsilon\to 0}\varepsilon^{1/\gamma}\log C_{r, p}\left(\left\|\frac{w(t+h\cdot)-w(t)}{\sqrt{h}}-\frac{f}{\varepsilon^{1/(2\gamma)}}\right\|_\alpha\le \varepsilon\tau\right)\\\;\;\;\le \frac{p}{q_2}\mathop{\lim}\limits_{\varepsilon\to 0}\varepsilon^{1/\gamma}\log \mu\left(\left\|w(\cdot)-\frac{f}{\varepsilon^{1/(2\gamma)}}\right\|_\alpha\le\varepsilon(\tau+\delta)\right)\\\;\;\; = \frac{p}{q_2}(-k(\tau+\delta)^{-\frac{1}{\gamma}}-I(f)).$

最后令$\delta\to 0, q_2\to p$, 引理4获证.

引理5  设$r_u, \sigma_u$如命题1所定义, 则对 s ∈ [0, 1]在$C_{r, p}$-q.s.意义下有

$\;\;\mathop{\liminf}\limits_{u\to \infty}\left(\sigma_u\right)^{1-\alpha}\mathop{\inf}\limits_{t\in [0, 1-\frac{r_u}{u}]}\|\left(r_u\sigma_u\right)^{-1/2} (w(ut+r_us)-w(ut))\|_\alpha\ge k^\gamma.$

  设$l(u)=r_u (\sigma_u )^{-\frac{2}{1-2\alpha}}$.对于$1<\theta<(1-\varepsilon)^{-2} $, 记$u_n=\theta^n.$选取适当$\delta_1>0$, 使得$\delta_2=1/(\theta^{1/2}(1-\varepsilon))^{1/\gamma}-\delta_1>1$.设$k_n=[\frac{u_{n+1}}{l(u_n)}]$, $t_i=il(u_n), i=0, 1, 2, \cdot\cdot\cdot, k_n$.则有

$\;\;\;\mathop{\min}\limits_{0<i\le k_n}\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(t_i+r_{u}\cdot)-w(t_i))\|_\alpha\nonumber\\\;\;\;\le \mathop{\max}\limits_{0\le i\le k_n}\mathop{\sup}\limits_{0\le S\le l(u_n)}\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(S+(t_i+r_{u}\cdot))-w(t_i+r_{u}\cdot))\|_\alpha\nonumber\\\;\;\;+\mathop{\inf}\limits_{t\in[0, 1-\frac{r_{u_{n+1}}}{u_{n+1}}]}\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(u_{n+1}t+r_u\cdot)-w(u_{n+1}t))\|_\alpha.$ (3)

由引理4, 对任意$0<\varepsilon<1, $$n$充分大时有

$\;\;\;\;\;\; C_{r, p}\left(\sigma_{u_{n+1}}^{1-\alpha}\mathop{\min}\limits_{0\le i\le k_n}\Bigl\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(t_i+r_{u}\cdot)-w(t_i))\Bigl\|_\alpha)\le (1-\varepsilon)k^\gamma \right)\\\;\;\;\le \mathop{\sum}\limits_{0\le i\le k_n}C_{r, p}\left(\left\|\frac{w(t_i+r_{u}\cdot)-w(t_i)}{\sqrt{\sigma_{u_{n+1}}}\sqrt{r_{u}}}\right\|_\alpha\le \theta^{1/2}\frac{k^\gamma(1-\varepsilon)}{(\sigma_{u_{n+1}})^{1-\alpha}} \right)\\\;\;\;\le (1+k_n)\exp\left\{-\sigma_{u_{n+1}}\delta_2\right\}\le \frac{u_{n+1}+l(u_{n})}{l(u_{n})}\left(\frac{r_{u_{n+1}}}{u_{n+1}\log u_{n+1}}\right)^{\delta_2}, $

因此根据Borel-Cantelli引理得到在$C_{r, p}$-q.s.意义下有

$\begin{aligned}\;\;\;\liminf_{n\to \infty}\sigma_{u_{n+1}}^{1-\alpha}\min_{0\le i\le k_n}\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(t_i+r_{u}\cdot)-w(t_i))\|_\alpha\ge k^\gamma.\end{aligned}$ (4)

另一方面, 对任意$\eta>0$

$ \;\;\;\;\;\;C_{r, p}\left\{\sigma_{u_{n+1}}^{1-\alpha}\mathop{\sup}\limits_{0\le i\le k_n}\mathop{\sup}\limits_{0\le s \le l(u_n) }\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}\|w(s+t_i+r_{u}\cdot)- w(t_i+r_{u}\cdot)\|_\alpha>\eta\right\}\\ \;\;\;=C_{r, p}\left\{\frac{\sigma_{u_{n+1}}^{1-\alpha}}{\sqrt{r_{u_{n+1}}\sigma_{u_{n+1}}}} \mathop{\sup}\limits_{0\le i\le k_n}\mathop{\sup}\limits_{0\le z\le 1}\|w(z l(u_n)+t_i+r_{u}\cdot)- w(t_i+r_{u}\cdot)\| _\alpha>\eta\right\}\\ \;\;\; \le\sum\limits_{j=0}^{[\frac{{{r}_{u}}}{l({{u}_{n}})}]} \sum\limits_{i=0}^{k_n}C_{r, p}\left\{\frac{\sigma_{u_{n+1}}^{1-\alpha}} {\sqrt{r_{u_{n+1}}\sigma_{u_{n+1}}}}\frac{r_{u}^\alpha}{(l(u_n))^\alpha} T(j, n)>\eta\right\}\\ \;\;\; \le\sum\limits_{j=0}^{[\frac{{{r}_{u}}}{l({{u}_{n}})}]}{\sum\limits_{i=0}^{{{k}_{n}}}{{{C}_{r, p}}}} \left\{\frac{1}{(\sigma_{u_{n+1}})^{\frac{1}{2}+\alpha}}\theta^{\alpha+\frac{3}{2}} \frac{1}{\sqrt{l(u_n)}} T(j, n)>\eta\right\}, $

其中$T(j, n)=\sup\limits_{0\le z\le1}\|w(zl(u_n)+t_i+jl(u_n)+l(u_n)\cdot)- w(t_i+jl(u_n)+ l(u_n)\cdot)\|_\alpha.$由于

$\;\;\;\;\;\;\mu\left\{\frac{1}{({\sigma_{u_{n+1}}})^{\frac{1}{2}+\alpha}}\theta^{\alpha+\frac{3}{2}}\frac{1}{\sqrt{l(u_n)}} T(j, n)>\eta\right\}\\\;\;\;=\mu\left\{\frac{\sqrt{2}\theta^{\alpha+3/2}}{\left(\sigma_{u_{n+1}}\right)^{\frac{1}{2}+\alpha}}\mathop{\sup}\limits_{0\le z\le 1}\left\|w(\frac{z}{2}+\frac{1}{2}\cdot)-w(\frac{1}{2}\cdot)\right\|_\alpha>\eta\right\}\\\;\;\;=\mu\left\{\frac{\sqrt{2}\theta^{\alpha+3/2}}{\left(\sigma_{u_{n+1}}\right)^{\frac{1}{2}+\alpha}}w\in Q\right\}, $

其中$Q=\{f\in \mathcal{C}^{\alpha, 0}; \sup\limits_{0\le z\le 1}\|f(\frac{1}{2}z+\frac{1}{2}\cdot)-f(\frac{1}{2}\cdot)\|_\alpha\ge \eta\}$, 且$\inf\limits_{f\in A}I(f)\ge \frac{\eta^2}{32}$, 故由引理1知当$n$充分大时有

$\;\;C_{r, p}\left\{\frac{\theta^{\alpha+\frac{3}{2}}}{(\sigma_{u_{n+1}})^{\frac{1}{2}+\alpha}}\frac{1}{\sqrt{l(u_n)}} T(j, n)>\eta\right\}\;\;\; \le \exp\left(-\frac{\eta^2}{128\theta^{\alpha+3/2}}\left(\sigma_{u_{n+1}}\right)^{2\alpha}\left(\sigma_{u_{n+1}}\right)\right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \left(\frac{r_{u_{n+1}}}{u_{n+1}\log u_{n+1}}\right)^{\frac{\eta^2}{128\theta^{\alpha+3/2}}\left(\sigma_{u_{n+1}}\right)^{2\alpha}}.$

考虑到当$n\to \infty$, $\sigma_{u_{n+1}}\to \infty$, 因此

$\;\;\sum\limits_{n}\frac{r_{u_{n+1}}}{l(u_n)}\frac{u_{n+1}+l(u_n)}{l(u_n)}\left(\frac{r_{u_{n+1}}}{u_{n+1}\log u_{n+1}}\right)^{\frac{\eta^2}{128\theta^{\alpha+3/2}}\left(\sigma_{u_{n+1}}\right)^{2\alpha}}<\infty.$

再次利用Borel-Cantelli引理可得在$C_{r, p}$-q.s.意义下有

$\;\;\limsup\limits_{n\to \infty}\sigma_{u_{n+1}}^{1-\alpha}\sup\limits_{0\le i\le k_n}\sup\limits_{0\le s \le l(u_n)}\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}\|w(s+t_i+r_{u}\cdot)-w(t_i+r_{u}\cdot)\|_\alpha=0.$ (5)

联合(3), (4), (5) 式得

$\;\;\liminf\limits_{n\to \infty}\sigma_{u_{n+1}}^{1-\alpha}\inf\limits_{t\in[0, 1-\frac{r_{u_{n+1}}}{u_{n+1}}]}\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(u_{n+1}t+r_u\cdot)-w(u_{n+1}t))\|_\alpha\ge k^\gamma, $ (6)

对于$u\in [u_n, u_{n+1})$, 再设$\phi_{t, u}(s)=\left(r_{u}\sigma_{u}\right)^{-1/2}(w(ut+r_us)-w(ut))$, 从而有

$\;\;\;\;\;\;\;\;\;\sigma_u^{1-\alpha}\inf\limits_{t\in [0, 1-\frac{r_u}{u}]}\|\phi_{t, u}\|_\alpha\nonumber\\\;\;\;\geq \sigma_u^{1-\alpha}\inf\limits_{t\in[0, 1-\frac{r_{u_{n+1}}}{u_{n+1}}]}\frac{\left(r_{u}\sigma_{u}\right)^{-1/2}}{\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}}\left\|\phi_{t, u_{n+1}}(\frac{r_u}{r_{u_{n+1}}}\cdot)\right\|_\alpha\nonumber\\\;\;\;\geq \sigma_{u_n}^{1-\alpha}\inf\limits_{t\in [0, 1-\frac{r_{u_{n+1}}}{u_{n+1}}]}\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}\|w(u_{n+1}t+r_u\cdot)-w(u_{n+1}t)\|_\alpha\nonumber\\\;\;\;\geq\frac{1}{\theta^{2(1-\alpha)}}\sigma_{u_{n+1}}^{1-\alpha}\inf\limits_{t\in[0, 1-\frac{r_{u_{n+1}}}{u_{n+1}}]}\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}\|w(u_{n+1}t+r_u\cdot)-w(u_{n+1}t)\|_\alpha.$ (7)

$\theta\to 1$, 由式(6)、(7) 证得在$C_{r, p}$-q.s.意义下有

$\;\;\liminf\limits_{u\to \infty}\sigma_u^{1-\alpha}\inf\limits_{t\in[0, 1-\frac{r_u}{u}]}\|\phi_{t, u}\|_\alpha\ge k^\gamma.$

引理6  设$r_u, \sigma_u$如引理5中所定义, 若$\lim\limits_{u\to \infty} \frac{\log ur_u^{-1}}{\log\log u}=\infty$, 则在$C_{r, p}$-q.s.意义下有

$\;\;\limsup\limits_{u\to \infty}\sigma_u^{1-\alpha}\inf\limits_{t\in [0, u-r_{u}]}\|\left(r_u\sigma_u\right)^{-1/2}(w(t+r_u\cdot)-w(t))\|_\alpha\le k^{\gamma}.$

  由于$\lim\limits_{u\to\infty}\frac{\log\frac{u}{r_u}}{\log\log u}=\infty$, 故存在子列$\{u_n\}$, 满足$\frac{u_n}{r_{u_n}}=n^{p_0}, {p_0}>1$.显然$\{u_n\}$单调递增, 且当$n\to \infty$$u_n \to \infty$.设$t_i=ir_{u_{n+1}}, \; i=0, 1, 2, \cdots, \; k_n=\left[\frac{u_{n}}{r_{u_{n+1}}}\right]-1, $$g(n)=\frac{\log\frac{{u_n}}{r_{u_n}}}{\log\log u_n} =\frac{\log n^{p_0}}{\log\log {u_n}}$, 则有$u_n=\exp{(n^{\frac{{p_0}}{g(n)}})}$, 且当$n\to \infty$, $g(n)\to \infty$.进一步, 对任意$\theta>0$, 当$n\to \infty$, $\frac{n^{\theta}}{\log u_n}\to \infty$, $1\leq\frac{u_{n+1}}{{u_n}}=\exp{\{(n+1)^{ \frac{{p_0}}{g(n+1)}}-n^{\frac{{p_0}}{g(n)}}\}}\leq \exp{\{n^{ \frac{{p_0}}{g(n)}-1}\}}\to1$.选取$\delta'>0$使得$\delta''=\frac{1}{(1+\varepsilon)^{1/\gamma}}+\delta'<1$.令$k=[r]+1$, 根据引理3得

$ \;\;\;\;\;\;C_{r, p}\left(\sigma_{u_{n+1}}^{1-\alpha}\inf\limits_{t\in [0, u_n-r_{u_{n+1}}]}\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(t+r_{u}\cdot)-w(t))\|_\alpha\ge k^\gamma(1+2\varepsilon) \right)^{1/p}\\ \;\;\;\le C_{r, p}\left( \min\limits_{0\leq i\leq k_n} \|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(t_i+r_{u}\cdot)-w(t_i))\|_\alpha\geq \frac{k^\gamma(1+2\varepsilon)}{\left(\sigma_{u_{n+1}}\right) ^{1-\alpha}} \right)^{1/p}\\ \;\;\;= (1+k_n)^k\left(\frac{\sigma_{u_{n+1}} ^{1-\alpha}}{k^\gamma \varepsilon}\right)^{2k^2+k} \mu\left(\pi_i \geq \frac{k^\gamma(1+\varepsilon)} {\left(\sigma_{u_{n+1}}\right)^{1-\alpha}} \right)^{\frac{(1+k_n)}{q_2}}, $

其中$\pi_i=\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(t_i+r_{u}\cdot)-w(t_i))\|_\alpha$.由(2) 式, 当$n$充分大时,

$ \;\;\;\;\;\;C_{r, p}\left(\sigma_{u_{n+1}}^{1-\alpha}\inf\limits_{t\in [0, u_n-r_{u_{n+1}}]}\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(t+r_{u}\cdot)-w(t))\|_\alpha\ge k^\gamma(1+2\varepsilon) \right)^{1/p}\\ \;\;\;\leq (1+k_n)^k\left(\frac{\left(\sigma_{u_{n+1}}\right) ^{1-\alpha}}{k^\gamma \varepsilon}\right)^{2k^2+k} \left(1-\left( \frac{r_{u_{n+1}}}{u_{n+1}\log u_{n+1}}\right)^{\delta''}\right)^{\frac{1+k_n}{q_2}} \\ \;\;\;\leq c n^{k{p_0}}\left(\log (n+1)\right)^{{(2k^2+k)(1-\alpha)}} \exp\left\{-\frac{1}{q_2}\left(\frac{r_{u_{n+1}}}{u_{n+1}\log u_{n+1}}\right)^{\delta''}\left[ \frac{u_{n}}{r_{u_{n+1}}}\right]\right\}, $

其中常数$c>0$.选取适当的$p_0$可得到

$\;\;\sum\limits_{n=1}^\infty c n^{pk{p_0}}\left(\log (n+1)\right)^{{p(2k^2+k)(1-\alpha)}} \exp\left\{-\frac{p}{q_2}\left( \frac{r_{u_{n+1}}}{u_{n+1}\log u_{n+1}}\right)^{\delta''} \left[ \frac{u_{n}}{r_{u_{n+1}}}\right]\right\}<\infty, $

由Borel-Cantelli引理, 从而证得存在一递增序列${u_n}, u_n\to \infty$, 使得在$C_{r, p}$-q.s.意义下有

$ \;\;\limsup\limits_{n\to \infty} \sigma_{u_{n+1}}^{1-\alpha} \inf\limits_{t\in [0, u_n-r_{u_{n+1}}]}\|\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}(w(t+r_{u}\cdot)-w(t))\|_\alpha\le k^{\gamma}, $ (8)

再设$\psi_{t, u}(s)=\left(r_u\sigma_u\right)^{-1/2}(w(t+r_us)-w(t))$, 经推导有$\psi_{t, u}(s)=\frac{\left(r_u\sigma_u\right)^{-1/2}}{\beta_{u_{n+1}}}\psi_{t, u_{n+1}} \left(\frac{r_u}{r_{u_{n+1}}}s\right), $其中$u\in (u_n, u_{n+1})$, 从而有

$ \;\;\;\;\;\;\inf\limits_{t\in [0, u-r_{u}]}\|\left(r_{u}\sigma_{u}\right)^{-1/2}(w(t+r_us)-w(t))\|_\alpha\\ \;\;\;\le \inf\limits_{t\in [0, u_n-r_{u_{n+1}}]}\frac{\left(r_{u_{n}}\sigma_{u_{n}}\right)^{-1/2}}{\left(r_{u_{n+1}}\sigma_{u_{n+1}}\right)^{-1/2}}\left\|\psi_{t, u_{n+1}}\left(\frac{r_u}{r_{u_{n+1}}}\cdot\right)\right\|_\alpha, $

由(8) 式, 考虑到当$n\to \infty$$\frac{r_{u_{n}}\sigma_{u_{n}}}{r_{u_{n+1}}\sigma_{u_{n+1}}}\to 1$, 引理6得证

参考文献
[1] Yoshida N. A large deviation principle for (r, p)-capacities on the Wiener space[J]. Prob. The. Relat. Fields, 1993, 94(4): 473–488. DOI:10.1007/BF01192559
[2] Baldi P, Roynette B. Some exact equivalents for the Brownian motion in Hölder norm[J]. Prob. The. Relat. Fields, 1992, 93(4): 457–483. DOI:10.1007/BF01192717
[3] Chen Xiong, Balakrishnan N. Extensions of functional LIL w.r.t. (r, p)-capacities on Wiemer space[J]. Stat. Prob. Lett., 2007, 77(4): 468–473. DOI:10.1016/j.spl.2006.09.001
[4] Liu Jicheng, Ren Jiagang. A functional modulus of continuity for Brownian motion[J]. Bull. Sci. Math., 2007, 131(1): 60–71. DOI:10.1016/j.bulsci.2006.03.009
[5] Wang Wensheng. A generalization of functional law of the iterated logarithm for (r, p)-capacities on the Wiener space[J]. Stoch. Proc. Appl., 2001, 96(1): 1–16. DOI:10.1016/S0304-4149(00)00096-X
[6] Liu Yonghong, Li Luoqing. The rate of quasi sure convergence in the functional limit theorem for increments of a Brownian motion[J]. J. Math. Analy. Appl., 2009, 356: 21–29. DOI:10.1016/j.jmaa.2009.02.036
[7] Baldi P, Ben A G, Kerkyacharian G. Large deviations and the Strassen theorem in Hölder norm[J]. Stoch. Proc. Appl., 1992, 42(1): 171–180. DOI:10.1016/0304-4149(92)90033-M
[8] Deuschel M, Stroock D W. Large deviation[M]. Baston: Academic Press, 1989.
[9] 张立新. 布朗运动在(r, p) -容度意义下的下极限性质[J]. 数学学报, 1996, 39(4): 543–555.
[10] 危启才. k -维Brown运动的泛函重对数定律[J]. 数学杂志, 2007, 27(4): 405–410.