数学杂志  2016, Vol. 36 Issue (4): 705-710   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
LÜ Xue-bin
MA Shu-jian
CHAOS EXPANSION FOR MULTIFRACTIONAL LÉVY PROCESSES
LÜ Xue-bin, MA Shu-jian     
Department of Applied Mathematics, School of Physical and Mathematics Sciences, Nanjing University of Technology, Nanjing 211816, China
Abstract: In this paper, we study the chaos expansion for multifractional Lévy processes. By using the white noise analysis, we give the chaos expansion of multifractional Lévy Processes. Moreover, we derive their Lévy-Hermite transforms and Malliavin derivatives.
Key words: muiltifractional Lévy processes     chaos expansion    
多分数Lévy过程的混沌展开
吕学斌, 马树建     
南京工业大学数理科学学院应用数学系, 江苏 南京 211816
摘要:本文研究了多分数Lévy过程的混沌展开.利用白噪声分析方法, 给出了多分数Lévy过程的混沌展开.进一步地, 给出其Lévy-Hermite变换和Malliavin导数.
关键词多分数Lévy过程    混沌展开    
1 Introduction

The study on fractional processes started from the fractional Brownian motion (FBM) which was first introduced by Kolmogrov in 1940 and popularized by Mandelbrot and Van Ness [1] in 1968. For a constant $\beta\in(-\frac{1}{2}, \frac{1}{2})$, a FBM $W^{\beta}$ is defined by

$ {{W}^{\beta }}=\int_{R}{\left( I_{-}^{\beta }{{1}_{[0, t]}} \right)\left( s \right)}d{{W}_{s}}=\frac{1}{\Gamma \left( \beta +1 \right)}\int_{-\infty }^{t}{\left( {{\left( t-s \right)}^{^{\beta }}}-\left( -s \right)_{+}^{\beta } \right)}d{{W}_{s}}, $

where $W$ is a standard Brownian motion, $I_{-}^{\beta}$ is the Riemann-Liouville fractional integration operator, $H=\beta+\frac{1}{2}$ is called the Hurst parameter of $W^{\beta}$. FBM exhibits self-similarity and long-range dependence when$0 < \beta < \frac{1}{2}$ while remaining Gaussian, therefore, suits to model driving noise in different applications such as mathematical finance. However, the Hurst parameter $H=\beta+\frac{1}{2}$ is a constant, this property make it unsuitable when some one use it to model some phenomena which do not admit a constant Hölder exponent. To this purpose, [2, 3] independently substitute $\beta$ by a Hölder continuous function $\beta:[0, \infty)\mapsto(-\frac{1}{2}, \frac{1}{2})$ and define the multifractional Brownian motion (MFBM) by

$ \begin{array}{*{35}{l}} {{\widetilde{W}}^{\beta }}\left( t \right)={{W}^{\beta (t)}}\left( t \right)=\int_{R}{\left( I_{-}^{\beta (t)}{{1}_{[0, t]}} \right)\left( s \right)}d{{W}_{s}} \\ \ \ \ \ \ \ \ \ \ =\frac{1}{\Gamma \left( \beta \left( t \right)+1 \right)}\int_{-\infty }^{t}{\left( {{\left( t-s \right)}^{\beta \left( t \right)}}-\left( -s \right)_{+}^{\beta \left( t \right)} \right)}d{{W}_{s}}. \\ \end{array} $

On the other hand, the light tails of FBM make it unsuitable to model the high volatility phenomenon.[4] and [5] defined fractional Lévy processes and noises on a Gel'fand triple. The$\beta$-fractional Lévy process on a Gel'fand$\{X_{t}^{\beta}, t\geq0\}$ ($0 < \beta < \frac{1}{2})$ is defined by

$ X_{t}^{\beta }=\int_{R}{\left( I_{-}^{\beta }{{1}_{[0, t]}} \right)\left( s \right)}d{{X}_{s}}=\frac{1}{\Gamma (\beta +1)}\int_{-\infty }^{t}{\left( {{\left( t-s \right)}^{_{\beta }}}-\left( -s \right)_{+}^{\beta } \right)}d{{X}_{s}}, $

where $X$ is a Lévy process on a Gel'fand with zero mean, continuous covariance operator. LÜ et al.[5] showed that fractional Lévy process has stationary increments, long-range dependence. Moreover, LÜ et al.[7]substitute the $\beta$ parameter of fractional Lévy processes by a Hölder continuous function with respect to time to define multifractional Lévy processes on Gel'fand triple.

In this paper, based on the white noises analysis of 0 mean Levy process with finite moments of any orders given by [6], we give the chaos expansion of multifractional Lévy Processes. Moreover, we derive their Lévy-Hermite transforms and Malliavin derivatives. The paper is organized as follows: In section 2, we recall the basic results about white noises analysis of Lévy processes; In section 3, we we derive the chaos expansion of Multifractional Lévy Processes.

2 White Noise Aanlysis for Lévy processes

Denote by $\mathcal{S}$$(\mathbb{R})$ the Schwartz space of rapidly decreasing $C^{\infty}$-functions on $\mathbb{R}^{d}$ and by $\mathcal{S}'$$(\mathbb{R})$ the space of tempered distributions, let $\mathcal{F}=B $$(\mathcal{S}'$$(\mathbb{R} ))$ be the Borel $\sigma-$ algebra. By Bochner-Minlos theorem, there exists a probability P on $\mathcal{S}'$$(\mathbb{R} )$ such that

$ \int_{\Omega }{{{e}^{iz\langle \omega ,f\rangle }}}P\left( d\omega \right)=\exp \left\{ \int_{-\infty }^{+\infty }{\psi }\left( zf\left( s \right) \right)ds \right\},z\in \mathbb{R},f\in S(\mathbb{R}), $ (2.1)

where

$ \psi \left( z \right)={{\int }_{\mathbb{R}}}\left[{{e}^{izx}}-1-izx \right]d\nu \left( \text{x} \right), u\in \mathbb{R}, $

$\nu$ is the Lévy measure satisfying $\nu(\{0\})=0$ and

$ \int_{\mathbb{R}}{\left( |x{{|}^{2}}\wedge 1 \right)}d\nu \left( x \right) < \infty, $

where $a\wedge b =\min\{a, b\}.$Moreover, we assume that

$ \int_{|x|>1}{|}x{{|}^{2}}dv\left( x \right)\text{ }\mathsf{ < }\infty . $

For $f\in S\left( \mathbb{R} \right)$, let$\dot X(f)(\omega ): = \langle \omega, f\rangle $, then by (2.1), we have

$ \begin{array}{l} \mathbb{E}\left[{\dot X\left( f \right)} \right] = 0, \\ \mathbb{E}{\left[{\dot X\left( f \right)} \right]^2} = \int_\mathbb{R} {{f^2}\left( y \right)} dy\int_\mathbb{R} {{x^2}} d\nu \left( x \right). \end{array} $

we can extend the definition of $\dot{X}(f)(\omega)$ for $f\in \mathcal{S}(\mathbb{R} ) $ to any $f \in L^{2}(\mathbb{R})$ by choosing $f_{n} \in \mathcal{S}(\mathbb{R} ) $ such that $f_{n}\rightarrow f$ in $L^{2}(\mathbb{R})$ and defining $\dot X\left( f \right)\left( \omega \right): = \mathop {\lim }\limits_{n \to \infty } \dot X\left( {{f_n}} \right)\left( \omega \right)$ (in $L^{2}(P))$. Now define $\eta(t) :=\dot{X}(\chi_{[0, t]}(s)) $, where

$ {\chi _{[0,t]}}\left( s \right) = \left\{ \begin{array}{l} 1,\;\;\;\;\;\;0 < s < t,\\ - 1,\;\;\;\;t s < 0,\\ 0,\;\;\;\;\;\;{\rm{else}}. \end{array} \right. $

The stochastic process $\{\eta(t), t\in \mathbb{R} \}$ has a càdlàg version, denoted by $X$. This process $\{X(t), t\in \mathbb{R} \}$ is a pure jump Lévy process with Lévy measure $\nu$. $X$ admits the stochastic integral representation

$ X\left( t \right)=\int_{0}^{t}{\int_{\mathbb{R}}{x}}\widetilde{N}\left( ds, dx \right), t\ge 0. $

where $ \widetilde{N}((0, t]\times A)=N((0, t]\times A)-t\nu(A) $ is its compensation Poisson measure. In this case, $X$ is a martingale and we call it pure-jump Lévy process.

From now on we assume that the Levy measure $\nu$ satisfies for all $\varepsilon>0$, there exists $\lambda>0$ such that

$ {{\int }_{{{\mathbb{R}}_{0}}\backslash \left( -\epsilon ,\mathsf{\epsilon } \right)}}\exp (\lambda |x|)d\nu (x) < \infty . $ (2.2)

where ${{\mathbb{R}}_{0}}=\mathbb{R}\backslash \left\{ 0 \right\}$. This condition means that $X$ has finite moment of any orders.Let $\{p_{j}(z), j\geq1\}$ be the orthonormal basis for $L^{2}(\nu)$ and $\{e_{i}(t), i\geq1\}$ be the Hermite functions, where $p_{1}(z)=m_{2}^{-1}z$, $m_{2}=\int_{\mathbb{R}}x^{2}\nu(dx)$. Define $\kappa(i, j)=j+\frac{(i+j-2)( i+j-1)}{2} $, $\delta_{\kappa(i, j)}(t, z)=e_{i}(t)p_{j}(z)$. For $\alpha\in \mathcal{J}$, (where $\mathcal{J}=\mathbb{N}^{\mathbb{N}}$), $({\rm{index}})\alpha = j$, $|\alpha|=m$, that is $\alpha=(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{j}, 0, 0, \cdots)$, $\sum\limits_{i=1}^{j}{{{\alpha }_{i}}}=m,{{\alpha }_{j}}\in \mathbb{N}$, we define

$ \begin{array}{*{35}{l}} \ \ \ {{\delta }^{\otimes \alpha }}({{t}_{1}}, {{z}_{1}}, \cdots, {{t}_{m}}, {{z}_{m}}) \\ =\delta _{1}^{\otimes {{\alpha }_{1}}}\otimes \cdots \otimes \delta _{j}^{\otimes {{\alpha }_{j}}}({{t}_{1}}, {{z}_{1}}, \ldots, {{t}_{m}}, {{z}_{m}}) \\ ={{\delta }_{1}}({{t}_{1}}, {{z}_{1}})\cdots {{\delta }_{1}}({{t}_{{{\alpha }_{1}}}}{{z}_{{{\alpha }_{1}}}})\cdots {{\delta }_{j}}({{t}_{m-{{\alpha }_{j}}+1}}, {{z}_{m-{{\alpha }_{j}}+1}})\cdots {{\delta }_{j}}({{t}_{m}}, {{z}_{m}}). \\ \end{array} $

We set $\delta_{j}^{\otimes0}=1$ and $\delta^{\widehat{\otimes }\alpha}(t_{1}, z_{1}, \cdots, t_{m}, z_{m}):=\delta_{1}^{\widehat{\otimes} \alpha_{1}}\otimes\cdots\otimes\delta_{j}^{\widehat{\otimes} \alpha_{j}}(t_{1}, z_{1}, \ldots, t_{m}, z_{m})$, define

$ {{K}_{\alpha }}={{I}_{|\alpha |}}({{\delta }^{\hat{\otimes }\alpha }}), $

where $I_{n}(f)$ is the $n$-fold iterated integral of $f$ with respect to $X$, $ \otimes $ means tensor product, $\widehat \otimes $means the symmetric tensor product (for more details, see [6]).

Theorem 2.1  (see [6]) Any $F\in L^{2}(P)$ has a unique expansion of the form

$ F=\sum\limits_{\alpha \in \mathcal{J}}{{{c}_{\alpha }}}{{K}_{\alpha }} $ (2.3)

with $c_{\alpha}\in\mathbb{R}$. Moreover,

$ \parallel F\parallel _{{{L}^{2}}(\Omega )}^{2}=\sum\limits_{\alpha \in \mathcal{J}}{\alpha }!c_{\alpha }^{2}. $

If F has the chaos expansion (2.3), its Lévy-Hermite transform of F is defined by

$ \mathcal{H}F(u):=\sum\limits_{\alpha \in \mathcal{J}}{{{c}_{\alpha }}}{{u}^{\alpha }}=\sum\limits_{\alpha \in \mathcal{J}}{{{c}_{\alpha }}}\prod\limits_{k}{u_{k}^{{{\alpha }_{k}}}}, $ (2.4)

where $u=(u_{1}, u_{2}, \ldots)\in \mathbb{C}^{N}$.

3 Chaos Expansion for Multi-fractional Lévy processes

In this section, we give the chaos expansion of multifractional Lévy processes. Moreover, we derive their Lévy-Hermite transforms and Malliavin derivatives.

By the definition of multi-fractional Lévy processes on Gel'fand triple given by [7], we can easily define the real-valued multi-fractional Lévy process.

Definition 3.1  Let $\beta: \mathbb{R^{+}}\rightarrow(0, \frac{1}{2})$ be a measurable function, $X$ be a two-side Lévy process satisfying all the assumptions in Section 2. Define

$ \begin{array}{*{35}{l}} X_{t}^{\beta (t)}:=\int_{R}{\left( I_{-}^{\beta \left( t \right)}{{1}_{[0, t]}} \right)\left( s \right)}d{{X}_{s}} \\ \ \ \ \ \ \ \ \ \ =\frac{1}{\Gamma \left( \beta \left( t \right)+1 \right)}\int_{-\infty }^{t}{\left( {{\left( t-s \right)}^{\beta \left( t \right)}}-\left( -s \right)_{+}^{\beta \left( t \right)} \right)}d{{X}_{s}}, \\ \end{array} $ (3.1)

where $x_{+}=\max\{x, 0\}$, $1_{B}$ is the indicator function on the set $B$, and $I_{-}^{\beta}$ is the Riemann-Liouville fractional integral operator defined by

$ \left( I_{-}^{\beta }f \right)\left( t \right)=\frac{1}{\Gamma \left( \beta \right)}\int_{t}^{\infty }{f\left( s \right)}{{\left( s-t \right)}^{\beta -1}}ds, $

if the integral exist for almost all $x\in \mathbb{R}$ (see [8]), and $\Gamma(\cdot)$ is the Gamma function.

By Theorem 3.2 of [7], we can obtain the one-dimensional distribution of the multi-fractionalLévy process.

Theorem 3.2   Let $X^{\beta}=\{X_{t}^{\beta(t)}, t\geq0\}$ be a $\beta$-multi-fractional Lévy process, then for any $t\geq0$, $X_{t}^{\beta(t)}$ is a 0 mean infinitely divisible R.V. with characteristic function

$ \mathbb{E}\left[\exp \left( izX_{t}^{\beta \left( t \right)} \right) \right]=\exp \left\{ \int{_{\mathbb{R}}}\left[{{e}^{izx}}-1-izx \right]d{{\nu }_{\beta \left( t \right)}}\left( x \right) \right\}, $ (3.2)

where

$ {{\nu }_{\beta \left( t \right)}}\left( B \right)=\int_{\mathbb{R}}{\int_{{{\mathbb{R}}_{0}}}{{{1}_{B}}}}\left\{ \left( I_{-}^{\beta \left( t \right)}{{1}_{[0, t]}} \right)\left( s \right)x \right\}\nu \left( dx \right)ds, \forall B\in \mathcal{B}(\mathbb{R}). $ (3.3)

$\forall s, t\geq0 $,

$ \begin{array}{l} \;\;\mathbb{E}\left[{X_t^{\beta \left( t \right)}X_s^{\beta \left( s \right)}} \right]\\ = {m_2}C\left( {\beta \left( t \right), \beta \left( s \right)} \right)\left( {|t{|^{\beta (t) + \beta (s) + 1}} + |s{|^{\beta (t) + \beta (s) + 1}} - |t - s{|^{\beta (t) + \beta (s) + 1}}} \right) \end{array} $ (3.4)

and

$ C\left( {\beta \left( t \right), \beta \left( s \right)} \right) = \frac{1}{{2\Gamma \left( {\beta \left( t \right) + \beta \left( s \right) + 2} \right)\sin \frac{{\left( {\beta \left( t \right) + \beta \left( s \right) + 1} \right)\pi }}{2}}}. $

Theorem 3.3  Let $X^{\beta}=\{X_{t}^{\beta(t)}, t\geq0\}$ be $\beta$-multi-fractional Lévy process, then for any $t\geq0$, the chaos expansion of $X_{t}^{\beta(t)}$ is

$ X_{t}^{\beta \left( t \right)}=\sum\limits_{i\ge 1}{{{m}_{2}}}\int_{\mathbb{R}}{\left( I_{-}^{\beta \left( t \right)}{{1}_{\left[0, t \right]}} \right)\left( s \right){{e}_{i}}\left( s \right)}ds{{K}_{\varepsilon \left( i, 1 \right)}}, $ (3.5)

where

$ {{K}_{\varepsilon \left( i, 1 \right)}}={{I}_{1}}\left( {{e}_{i}}\left( t \right){{p}_{1}}\left( z \right) \right), $

$\varepsilon(i, 1)=(0, 0, \cdots, 1, 0, \cdots)$ with the 1 on the $\kappa(i, 1)$th place.

Proof  Since $I_{-}^{\beta(t)}1_{[0, t]}\in L^{2}(\mathbb{R})$, for any $t\geq0$, $X_{t}^{\beta(t)}\in L^{2}(P)$, then by Theorem 2.1,

$ \begin{array}{l} X_t^\beta = \int_R {(I_ - ^{\beta (t)}{1_{[0, t]}})(s)} d{X_s}\\ \;\;\;\;\;\; = {I_1}(I_ - ^{\beta (t)}{1_{[0, t]}}(s)z)\\ \;\;\;\;\;\; = {I_1}(\sum\limits_i {\langle I_ - ^{\beta (t)}{1_{[0, t]}}(} \cdot ), {e_i}( \cdot ){\rangle _{{L^2}(\mathbb{R})}}{e_i}(s)z)\\ \;\;\;\;\;\; = \sum\limits_i {\langle (} I_ - ^{\beta (t)}{1_{[0, t]}})( \cdot ), {e_i}( \cdot ){\rangle _{{L^2}(\mathbb{R})}}{I_1}({e_i}(s)z)\\ \;\;\;\;\;\; = \sum\limits_{i \ge 1} {{m_2}} {\langle (I_ - ^{\beta (t)}{\chi _{[0, t]}})( \cdot ), {e_i}( \cdot )\rangle _{{L^2}(\mathbb{R})}}{K_{\varepsilon (i, 1)}}\\ \;\;\;\;\;\; = \sum\limits_{i \ge 1} {{m_2}} \int_\mathbb{R} {(I_ - ^{\beta (t)}{\chi _{[0, t]}})(s){e_i}(s)} ds{K_{\varepsilon (i, 1)}}. \end{array} $

Thus we get the desired.

By the following fractional integral by parts formula of operator$I_{\pm}^{\beta}$:

$ \int_{-\infty}^{+\infty}f(s)(I_{+}^{\beta}g)(s)ds= \int_{-\infty}^{+\infty}g(s)(I_{-}^{\beta}f)(s)ds, \ f, g\in \mathcal{S}(\mathbb{R}), $

which can be extended to $f\in L^{p}(\mathbb{R})$, $g\in L^{r}(\mathbb{R})$ with $p>1$, $r>1$ and $\frac{1}{p}+\frac{1}{r}=1+\beta$, where

$ \left( I_{+}^{\beta }f \right)\left( t \right)=\frac{1}{\Gamma (\beta )}\int_{-\infty }^{t}{{{\left( t-s \right)}^{\beta -1}}}f\left( s \right)ds $

(see [8]), (3.5) can be written as

$ X_{t}^{\beta \left( t \right)}={{m}_{2}}\sum\limits_{i\ge 1}{\int_{0}^{t}{I_{+}^{\beta \left( t \right)}}}{{e}_{i}}\left( s \right)ds{{K}_{\varepsilon \left( i, 1 \right)}}. $

By the chaos expansion of $X^{\beta}$, we get

Corollary 3.4  Let $X^{\beta}=\{X_{t}^{\beta(t)}, t\geq0\}$ be $\beta$-multi-fractional Lévy process, then for any $t\geq0$, the Lévy-Hermite transform of $X_{t}^{\beta(t)}$

$ \mathcal{H}X_{t}^{\beta \left( t \right)}\left( u \right)=\sum\limits_{i\ge 1}{{{m}_{2}}}\int_{\mathbb{R}}{\left( I_{-}^{\beta \left( t \right)}{{1}_{\left[0, t \right]}} \right)\left( s \right){{e}_{i}}\left( s \right)}ds{{u}_{\varepsilon \left( i, 1 \right)}}, $ (3.6)

where $u=(u_{1}, u_{2}, \ldots)\in \mathbb{C}^{N}$.

By equality (12.4) of \cite{Nunno}, we can easily get

Proposition 3.5  Let $X^{\beta}=\{X_{t}^{\beta(t)}, t\geq0\}$ be $\beta$-multi-fractional Lévy process, then for any $t\geq0$, the Malliavin derivative of $X_{t}^{\beta(t)}$

$ {{D}_{s, z}}X_{t}^{\beta \left( t \right)}=\left( I_{-}^{\beta \left( t \right)}{{1}_{\left[0, t \right]}} \right)\left( s \right)z. $ (3.7)
References
[1] Mandelbrot B, Van Vess J. Fractional Brownian motion, fractional noises and application[J]. SIAM Rev, 1968, 10: 427–437.
[2] Benassi A, Jaffard S, Roux D. Elliptic Gaussian random process[J]. Rev Mat Iberoamericana, 1997, 13(1): 19–89.
[3] Peltier R, Lévy-Véhel J. Multifractional Brownian motion: definition and preliminary results[C]. INRIA Research Report, 1995.
[4] Huang Z, LÜ X, Wan J. Fractional Lévy processes and noises on Gel'fand triple[J]. Stoch Dyn, 2010, 10: 37–51. DOI:10.1142/S0219493710002838
[5] LÜ X, Huang Z, Wan J. Fractional Lévy processes on Gel'fand triple and stochastic integration[J]. Front Math China, 2008, 3: 287–303. DOI:10.1007/s11464-008-0022-0
[6] Nunno G D, Oksendal B, Proke F. Malliavin calculus for Lévy processes with application to Finance[M]. Berlin: Springer, 2008.
[7] LÜ X, Zuo Y. Multi-fractional Lévy processes on Gel'fand triple[J]. J Math China, 2012, 32(6): 80–85.
[8] Samko S G, Kilbas A A, Marichev O I. Fractional integrals and derivatives: theory and applications[M]. New York: Gordan and Breach, 1993.