CHAOS EXPANSION FOR MULTIFRACTIONAL LÉVY PROCESSES

LÜ Xue-bin , MA Shu-jian

(Department of Applied Mathematics, School of Physical and Mathematics Sciences, Nanjing University of Technology, Nanjing 211816, China)

Abstract: In this paper, we study the chaos expansion for multifractional Lévy processes. By using the white noise analysis, we give the chaos expansion of multifractional Lévy Processes. Moreover, we derive their Lévy-Hermite transforms and Malliavin derivatives.

Keywords: multifractional Lévy processes; chaos expansion

2010 MR Subject Classification: 60E07; 60G20; 60G22; 60G51; 60H40

1 Introduction

The study on fractional processes started from the fractional Brownian motion (FBM) which was first introduced by Kolmogrov in 1940 and popularized by Mandelbrot and Van Ness [1] in 1968. For a constant $\beta \in (-\frac{1}{2}, \frac{1}{2})$, a FBM W^β is defined by

$$W^\beta = \frac{1}{\Gamma(\beta + 1)} \int_{-\infty}^{t} ((t-s)^\beta - (-s)^\beta) dW_s,$$

where W is a standard Brownian motion, I^β is the Riemann-Liouville fractional integration operator, $H = \beta + \frac{1}{2}$ is called the Hurst parameter of W^β. FBM exhibits self-similarity and long-range dependence when $0 < \beta < \frac{1}{2}$ while remaining Gaussian, therefore, suits to model driving noise in different applications such as mathematical finance. However, the Hurst parameter $H = \beta + \frac{1}{2}$ is a constant, this property make it unsuitable when some one use it to model some phenomena which do not admit a constant Hölder exponent. To this purpose, [2, 3] independently substitute β by a Hölder continuous function $\beta : [0, \infty) \mapsto (-\frac{1}{2}, \frac{1}{2})$ and define the multifractional Brownian motion (MFBM) by

$$\tilde{W}^\beta(t) = W^{\beta(t)}(t) = \frac{1}{\Gamma(\beta(t) + 1)} \int_{-\infty}^{t} ((t-s)^{\beta(t)} - (-s)^{\beta(t)}) dW_s,$$

Received date: 2013-05-30
Accepted date: 2014-10-16

Foundation item: Supported by Natural Science Foundation of Jiangsu Province (BK20150935) and Natural Science Foundation of China (41101509).

On the other hand, the light tails of FBM make it unsuitable to model the high volatility phenomenon. [4] and [5] defined fractional Lévy processes and noises on a Gel’fand triple. The β-fractional Lévy process on a Gel’fand triple $\{X^\beta_t, t \geq 0\}$ $(0 < \beta < \frac{1}{2})$ is defined by

$$X^\beta_t = \int \frac{1}{\Gamma(\beta + 1)} \int_{-\infty}^t ((t-s)^\beta - (-s)^\beta) dX_s,$$

where X is a Lévy process on a Gel’fand with zero mean, continuous covariance operator. Lü et al. [5] showed that fractional Lévy process has stationary increments, long-range dependence. Moreover, Lü et al. [7] substitute the β parameter of fractional Lévy processes by a Hölder continuous function with respect to time to define multifractional Lévy processes on Gel’fand triple.

In this paper, based on the white noise analysis of 0 mean Lévy process with finite moments of any orders given by [6], we give the chaos expansion of multifractional Lévy processes. Moreover, we derive their Lévy-Hermite transforms and Malliavin derivatives. The paper is organized as follows: in Section 2, we recall the basic results about white noise analysis of Lévy processes; in Section 3, we we derive the chaos expansion of multifractional Lévy processes.

2 White Noise Analysis for Lévy Processes

Denote by $\mathcal{S}(\mathbb{R})$ the Schwartz space of rapidly decreasing C^∞-functions on \mathbb{R}^d and by $\mathcal{S}'(\mathbb{R})$ the space of tempered distributions, let $\mathcal{F} = B(\mathcal{S}'(\mathbb{R}))$ be the Borel σ-algebra. By Bochner-Minlos theorem, there exists a probability P on $\mathcal{S}'(\mathbb{R})$ such that

$$\int_{\Omega} e^{iz\langle \omega, f \rangle} P(d\omega) = \exp\left\{ \int_{-\infty}^{+\infty} \psi(zf(s))ds \right\}, \quad z \in \mathbb{R}, f \in \mathcal{S}(\mathbb{R}),$$

(2.1)

where

$$\psi(z) = \int_{\mathbb{R}} \left[e^{ixz} - 1 - ixz \right] d\nu(x), \quad u \in \mathbb{R},$$

ν is the Lévy measure satisfying $\nu(\{0\}) = 0$ and

$$\int_{\mathbb{R}} (|x|^2 \wedge 1) d\nu(x) < \infty,$$

where $a \wedge b = \min\{a, b\}$. Moreover, we assume that

$$\int_{|x| > 1} |x|^2 d\nu(x) < \infty.$$

For $f \in \mathcal{S}(\mathbb{R})$, let $X(f)(\omega) := \langle \omega, f \rangle$, then by (2.1), we have

$$\mathbb{E}[X(f)] = 0,$$

$$\mathbb{E}[X(f)]^2 = \int_{\mathbb{R}} f^2(y) dy \int_{\mathbb{R}} x^2 d\nu(x).$$
We can extend the definition of \(\hat{X}(f)(\omega) \) for \(f \in \mathcal{S}(\mathbb{R}) \) to any \(f \in L^2(\mathbb{R}) \) by choosing \(f_n \in \mathcal{S}(\mathbb{R}) \) such that \(f_n \rightarrow f \) in \(L^2(\mathbb{R}) \) and defining \(\hat{X}(f)(\omega) := \lim_{n \rightarrow \infty} \hat{X}(f_n)(\omega) \) (in \(L^2(\mathbb{P}) \)). Now define \(\eta(t) := \hat{X}(\chi_{[0,t]}(s)) \), where

\[
\chi_{[0,t]}(s) = \begin{cases}
1, & 0 < s < t, \\
-1, & t < s < 0, \\
0, & \text{else.}
\end{cases}
\]

The stochastic process \(\{\eta(t), t \in \mathbb{R}\} \) has a càdlàg version, denoted by \(X \). This process \(\{X(t), t \in \mathbb{R}\} \) is a pure jump Lévy process with Lévy measure \(\nu \), \(X \) admits the stochastic integral representation

\[
X(t) = \int_0^t \int_{\mathbb{R}} x\tilde{N}(ds, dx), \quad t \geq 0,
\]

where \(\tilde{N}((0,t] \times A) = N((0,t] \times A) - t\nu(A) \) is its compensation Poisson measure. In this case, \(X \) is a martingale and we call it pure-jump Lévy process.

From now on we assume that the Lévy measure \(\nu \) satisfies for all \(\varepsilon > 0 \), there exists \(\lambda > 0 \) such that

\[
\int_{\mathbb{R}_d \setminus (-\epsilon, \epsilon)} \exp(\lambda|x|)d\nu(x) < \infty,
\]

where \(\mathbb{R}_d = \mathbb{R} \setminus \{0\} \). This condition means that \(X \) has finite moment of any orders. Let \(\{p_j(z), j \geq 1\} \) be the orthonormal basis for \(L^2(\nu) \) and \(\{e_i(t), i \geq 1\} \) be the Hermite functions, where \(p_1(z) = m_2^{-1/2}z, \quad m_2 = \int_{\mathbb{R}} x^2\nu(dx) \). Define \(\kappa(i, j) = j + \frac{(i+j-2)(i+j-1)}{2} \),

\[
\delta_{\alpha(i,j)}(t, z) = e_i(t)p_j(z).
\]

For \(\alpha \in \mathcal{J} \) (where \(\mathcal{J} = \mathbb{N}^\mathbb{N} \)), \((\text{index})\alpha = j, |\alpha| = m \), that is \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_j, 0, 0, \ldots) \), \(\sum_{i=1}^j \alpha_i = m, \alpha_j \in \mathbb{N} \), we define

\[
\delta^{\otimes_\mathbb{R}}(t_1, z_1, \ldots, t_m, z_m)
= \delta_1^{\otimes_\mathbb{R}} \otimes \cdots \otimes \delta_j^{\otimes_\mathbb{R}}(t_1, z_1, \ldots, t_m, z_m)
= \delta_1(t_1, z_1) \cdots \delta_1(t_{\alpha_1}, z_{\alpha_1}) \cdots \delta_j(t_{m-\alpha_j+1}, z_{m-\alpha_j+1}) \cdots \delta_j(t_m, z_m).
\]

We set \(\delta_j^{\otimes_0} = 1 \) and \(\delta^{\otimes_\alpha}(t_1, z_1, \ldots, t_m, z_m) := \delta_1^{\otimes_\alpha_1} \otimes \cdots \otimes \delta_j^{\otimes_\alpha_j}(t_1, z_1, \ldots, t_m, z_m) \), define

\[
K_\alpha = I_\alpha(\delta^{\otimes_\alpha}),
\]

where \(I_n(f) \) is the \(n \)-fold iterated integral of \(f \) with respect to \(X \), \(\otimes \) means tensor product, \(\hat{\otimes} \) means the symmetric tensor product (for more details, see [6]).

Theorem 2.1 (see [6]) Any \(F \in L^2(\mathbb{P}) \) has a unique expansion of the form

\[
F = \sum_{\alpha \in \mathcal{J}} c_\alpha K_\alpha \tag{2.3}
\]

with \(c_\alpha \in \mathbb{R} \). Moreover,

\[
\| F \|_{L^2(\mathbb{P})}^2 = \sum_{\alpha \in \mathcal{J}} \alpha!c_\alpha^2.
\]
If F has the chaos expansion (2.3), its Lévy-Hermite transform of F is defined by

$$
\mathcal{H}F(u) := \sum_{\alpha \in J} c_{\alpha} u^{\alpha} = \sum_{\alpha \in J} c_{\alpha} \prod_{k} u_{k}^{\alpha_{k}},
$$

(2.4)

where $u = (u_{1}, u_{2}, \ldots) \in \mathbb{C}^{N}$.

3 Chaos Expansion for Multifractional Lévy Processes

In this section, we give the chaos expansion of multifractional Lévy processes. Moreover, we derive their Lévy-Hermite transforms and Malliavin derivatives.

By the definition of multi-fractional Lévy processes on Gel’fand triple given by [7], we can easily define the real-valued multi-fractional Lévy process.

Definition 3.1 Let $\beta : \mathbb{R}^{+} \rightarrow (0, \frac{1}{2})$ be a measurable function, X be a two-side Lévy process satisfying all the assumptions in Section 2. Define

$$
X_{t}^{\beta(t)} := \int_{\mathbb{R}} (I_{t}^{\beta(t)}1_{[0,t]})(s)dX_{s}
$$

(3.1)

where $x_{+} = \max\{x, 0\}$, 1_{B} is the indicator function on the set B, and I_{β}^{β} is the Riemann-Liouville fractional integral operator defined by

$$(I_{\beta}^{\beta}f)(t) = \frac{1}{\Gamma(\beta(t) + 1)} \int_{t}^{+\infty} f(s-t)^{\beta(t)-1}ds,$$

if the integral exist for almost all $x \in \mathbb{R}$ (see [8]), and $\Gamma(\cdot)$ is the Gamma function.

By Theorem 3.2 of [7], we can obtain the one-dimensional distribution of the multifractional Lévy process.

Theorem 3.2 Let $X^{\beta} = \{X_{t}^{\beta(t)}, t \geq 0\}$ be a β-multifractional Lévy process, then for any $t \geq 0$, $X_{t}^{\beta(t)}$ is a 0 mean infinitely divisible random variable with characteristic function

$$
\mathbb{E}[\exp(izX_{t}^{\beta(t)})] = \exp\{\int_{\mathbb{R}} [e^{ix} - 1 - ixx]\nu_{\beta(t)}(x)dx\},
$$

(3.2)

where

$$
\nu_{\beta(t)}(B) = \int_{\mathbb{R}} \int_{\mathbb{R}} 1_{B}\{(I_{t}^{\beta(t)}1_{[0,t]})(s)x\} \nu(dx)ds, \forall B \in B(\mathbb{R}).
$$

(3.3)

$$
\forall s, t \geq 0,
$$

$$
\mathbb{E}[X_{t}^{\beta(t)}X_{s}^{\beta(s)}] = m_{2}C(\beta(t), \beta(s))(|t|^{\beta(t)+\beta(s)+1} + |s|^{\beta(t)+\beta(s)+1} - |t - s|^{\beta(t)+\beta(s)+1})
$$

(3.4)

and

$$
C(\beta(t), \beta(s)) = \frac{1}{2\Gamma(\beta(t) + \beta(s) + 2) \sin \frac{\beta(t)+\beta(s)+1}{2}\pi}.
$$
Theorem 3.3 Let $X_\beta = \{X^\beta_t(t), t \geq 0\}$ be β-multi-fractional Lévy process, then for any $t \geq 0$, the chaos expansion of $X^\beta_t(t)$ is

$$
X^\beta_t(t) = \sum_{i \geq 1} m_2 \int_{\mathbb{R}} (I^\beta_1 1_{[0, t]})(s) e_i(s) ds K_{\varepsilon(i, 1)}, \tag{3.5}
$$

where

$$
K_{\varepsilon(i, 1)} = I_1(e_i(t)p_1(z)),
$$

$\varepsilon(i, 1) = (0, 0, \cdots, 1, 0, \cdots)$ with the 1 on the $\kappa(i, 1)$th place.

Proof Since $I^\beta_1 1_{[0, t]} \in L^2(\mathbb{R})$, for any $t \geq 0$, $X^\beta_t(t) \in L^2(P)$, then by Theorem 2.1,

$$
X^\beta_t(t) = \int_{\mathbb{R}} (I^\beta_1 1_{[0, t]})(s) dX_s
= I_1(I^\beta_1 1_{[0, t]}(s) z)
= I_1(\sum_{i} (I^\beta_1 1_{[0, t]}(\cdot), e_i(\cdot))_{L^2(\mathbb{R})} e_i(s) z)
= \sum_{i} (I^\beta_1 1_{[0, t]}(\cdot), e_i(\cdot))_{L^2(\mathbb{R})} I_1(e_i(s) z)
= \sum_{i \geq 1} m_2 (I^\beta_1 1_{[0, t]}(\cdot), e_i(\cdot))_{L^2(\mathbb{R})} K_{\varepsilon(i, 1)}
= \sum_{i \geq 1} m_2 \int_{\mathbb{R}} (I^\beta_1 1_{[0, t]}(\cdot)) e_i(s) ds K_{\varepsilon(i, 1)}.
$$

Thus we get the desired.

By the following fractional integral by parts formula of operator I^β_+:

$$
\int_{-\infty}^{+\infty} f(s)(I^\beta g)(s) ds = \int_{-\infty}^{+\infty} g(s)(I^\beta f)(s) ds, \; f, g \in S(\mathbb{R}),
$$

which can be extended to $f \in L^p(\mathbb{R})$, $g \in L^r(\mathbb{R})$ with $p > 1$, $r > 1$ and $\frac{1}{p} + \frac{1}{r} = 1 + \beta$, where

$$
(I^\beta f)(t) = \frac{1}{\Gamma(\beta)} \int_{-\infty}^{t} (t - s)^{\beta - 1} f(s) ds
$$

(see [8]), (3.5) can be written as

$$
X^\beta_t(t) = m_2 \sum_{i \geq 1} \int_{0}^{t} I^\beta_+(t) e_i(s) ds K_{\varepsilon(i, 1)}.
$$

By the chaos expansion of X^β, we get

Corollary 3.4 Let $X_\beta = \{X^\beta_t(t), t \geq 0\}$ be β-multifractional Lévy process, then for any $t \geq 0$, the Lévy-Hermite transform of $X^\beta_t(t)$

$$
\mathcal{H}X^\beta_t(t)(u) = \sum_{i \geq 1} m_2 \int_{\mathbb{R}} (I^\beta_1 1_{[0, t]})(s) e_i(s) ds u_{\varepsilon(i, 1)}, \tag{3.6}
$$
where \(u = (u_1, u_2, \cdots) \in \mathbb{C}^N \).

By equality (12.4) of [6], we can easily get

Proposition 3.5 Let \(X^\beta = \{X^{\beta(t)}_t, t \geq 0\} \) be \(\beta \)-multifractional Lévy process, then for any \(t \geq 0 \), the Malliavin derivative of \(X^{\beta(t)}_t \)

\[
D_s z X^{\beta(t)}_t = (I^{\beta(t)}_{\mathbb{1}_{[0,t]}})(s) z.
\]

(3.7)

References

