数学杂志  2016, Vol. 36 Issue (3): 501-510   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
SHI Lei
WANG Zhi-gang
CERTAIN NEW SUBCLASSES OF ANALYTIC FUNCTIONS WITH RESPECT TO k-SYMMETRIC POINTS
SHI Lei, WANG Zhi-gang     
School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China
Abstract: In this article, we introduce two new subclasses Rms (b, k, λ) and Kms (α, b, k, λ, δ) of analytic functions with respect to k-symmetric points. By using the principle of subordination, we obtain the integral representations, coe-cient inequalities, covering theorems and arc-length estimates for these function classes, which would provide extensions of those given in earlier works.
Key words: analytic functions     k-symmetric points     subordination     arc-length    
k折对称点有关的解析函数族的一些新子族
石磊, 王智刚     
安阳师范学院数学与统计学院, 河南 安阳 455000
摘要:本文引入了两类与k折对称点有关的解析函数族的新子族.利用从属理论, 得到了这些函数族的积分表示、系数不等式、覆盖定理、弧长估计等结果.所得结果推广了一些相关文献的结论.
关键词解析函数    k折对称点    从属    弧长    
1 Introduction

Let $\mathcal{A}$ denote the class of functions $f$ of the form

$f(z) = z + \sum\limits_{n = 2}^\infty {{a_n}{z^n}} ,$ (1.1)

which are analytic in the unit disk $\mathbb{U}:=\{z:{|z|}<1\}$.

Let $S, S^{*}(\gamma), C(\gamma), K(\gamma)$ be the subclasses of $\mathcal{A}$ whose members are univalent, starlike of order $\gamma$, convex of order $\gamma$, and close-to-convex of order $\gamma$, respectively, where $0\leq \gamma<1$.

Let $f$ and $g$ be analytic in $\mathbb{U}$. Then $f$ is said to be subordinate to $g$, written $f\prec g$, if there exists an analytic function $\omega(z)$, with $\omega(0)=0$ and ${|w(z)|}<1$ such tat $f(z)=g(\omega(z))$. Indeed, it is known that

$f(z)\prec g(z)(z\in\mathbb{U})\Longrightarrow f(0)=g(0)\quad{\rm{and}}\quad f(\mathbb{U})\subset g(\mathbb{U}).$

Furthermore, if the function $g$ is univalent in $\mathbb{U}$, then we have the following equivalence:

$f(z)\prec g(z)(z\in\mathbb{U})\Longleftrightarrow f(0)=g(0) \quad{\rm and}\quad f(\mathbb{U})\subset g(\mathbb{U}).$

Sakaguchi [13] introduced a class $S_{s}^{*}$ of starlike functions with respect to symmetric points which satisfy the inequality

${\rm{Re}}\left(\frac{zf^{\prime}(z)}{f(z)-f(-z)}\right)>0\qquad(z\in\mathbb{U}).$

Since then, many authors discussed this class and its subclasses. Also, a function $f(z)\in\mathcal{A}$ is in the class $C_{s}$ if and only if $zf^{\prime}(z)\in S_{s}^{*}$.

Let $P_{m}(\gamma)$ be the class of functions $p$ analytic in $\mathbb{U}$ satisfying the conditions $p(0)=1$ and

$\int_{0}^{2\pi}|{\frac{{\rm{Re}}(p(z))-\gamma}{1-\gamma}}|d\theta\leq m\pi\qquad(0\leq\gamma<1;\, m\geq2;\, z=re^{i\theta}).$

This class was introduced in [11]. We note that $P_{m}(0)\equiv P_{m}$ is introduced in [12] and $P_{2}(\gamma)\equiv P(\gamma)$ is the class of functions with positive real part of order $\gamma$. With $m=2$, $\gamma=0$, we have the class $P$ of functions with positive real part.

The classes $V_{m}(\gamma)$ of functions of bounded boundary rotation of order $\gamma$ and $R_{m}(\gamma)$ of functions of bounded radius rotation of order $\gamma$ are closely related with $P_{m}(\gamma)$. A function $f\in\mathcal{A}$ is said to be in the class $V_{m}(\gamma)$ if and only if

$\frac{(zf^{\prime}(z))^{\prime}}{f^{\prime}(z)}\in P_{m}(\gamma)\qquad(z\in\mathbb{U}).$

Moreover, we know that

$f\in R_{m}(\gamma)\Longleftrightarrow\frac{zf^{\prime}(z)}{f(z)}\in P_{m}(\gamma)\qquad(z\in\mathbb{U}).$

Motivated essentially by the above work, we introduce and study the following classes $R_{m}^{s}(b, k, \lambda)$ and $K_{m}^{s}(\alpha, b, k, \lambda, \delta)$ with respect to $k$-symmetric points.

Definition 1.1  Suppose that $b\in\mathbb{C}\setminus\{0\}$, $0\leq\lambda\leq1$, $m\geq2$ and $k$ is a fixed positive integer. A function $f\in\mathcal{A}$ is said to be in the class $R_{m}^{s}(b, k, \lambda)$ if and only if

$\begin{equation}\label{12} 1+\frac{1}{b}\left\{\frac{zf^{\prime}(z)+\lambda z^{2}f^{\prime\prime}(z)}{(1-\lambda)f_{k}(z)+\lambda zf_{k}^{\prime}(z)}-1\right\}\in P_{m}\qquad(z\in\mathbb{U}), \end{equation}$ (1.2)

where $f_{k}(z)$ is defined by

${f_k}(z) = \frac{1}{k}\sum\limits_{\nu = 0}^{k - 1} {{\varepsilon ^{ - \nu }}} f({\varepsilon ^\nu }z)\qquad \left( {z \in\mathbb{U};\;\varepsilon = {\rm{exp}}\left( {\frac{{2\pi i}}{k}} \right)} \right).$ (1.3)

Remark 1.1  For some recent investigations on analytic functions involving $k$-symmetric points, one can refer to [6, 14-17].

Definition 1.2  Let $\alpha>0$, $m\geq2$ and $0\leq\delta<1$. A function $f\in\mathcal{A}$ is said to be in the class $K_{m}^{s}(\alpha, b, k, \lambda, \delta)$ if and only if

$\begin{equation}\label{14} \frac{zf^{\prime}(z)}{f(z)}\left(\frac{f(z)}{g_{k}(z)}\right)^{\alpha}\in P_{m}(\delta)\qquad(z\in\mathbb{U}) \end{equation}$ (1.4)

for some $g\in R_{2}^{s}(b, k, \lambda)$.

Remark 1.2  For special choices of $\alpha, b, k, \lambda, m$ and $\delta$, several related function classes have been studied extensively, see for example [1, 2, 8-10].

In the present paper, we aim at proving some basic properties of the classes $R_{m}^{s}(b,k,\lambda)$ and $K_{m}^{s}(\alpha,b,k,\lambda,\delta)$. Such results as integral representations, coefficient inequalities, covering theorems and arc-length estimates are derived. The results presented here would provide extensions of those given in earlier works.

2 Preliminary Results

In order to prove our main results, we need the following lemmas.

Lemma 2.1  (see [3]) Let $h$ be convex in $\mathbb{U}$ with ${\rm{Re}}(\beta h(z)+\gamma)>0$. If $q$ is analytic in $\mathbb{U}$ with $q(0)=h(0)$, then

$\begin{equation}\label{21} q(z)+\frac{zq^{\prime}(z)}{\beta q(z)+\gamma}\prec h(z)\Longrightarrow q(z)\prec h(z). \end{equation}$ (2.1)

Lemma 2.2  (see [5]) If $f\in S^{*}(\alpha)$, $0\leq\alpha<1$ and ${|z|}=r<1$, then

$\begin{equation}\label{23} \frac{r}{(1+r)^{2(1-\alpha)}}\leq{f(z)}\leq\frac{r}{(1-r)^{2(1-\alpha)}}. \end{equation}$ (2.2)

Lemma 2.3 (see [7]) Let $p\in P_{m}(\gamma)$ and ${|z|}=r<1$. Then

$\begin{equation}\label{24} \frac{1}{2\pi}\int_{0}^{2\pi}{p(z)}^{2}d\theta\leq\frac{1+[m^{2}(1-\gamma)^{2}-1]r^{2}}{1-r^{2}}. \end{equation}$ (2.3)

Lemma 2.4  (see [4]) Let $q$ be univalent in $\mathbb{U}$. Then there exists a point $\xi$ with ${|\xi|}=r$ such that for all $z$, ${|z|}=r$,

$\begin{equation}\label{25} {z-\xi}{q(z)}\leq\frac{2r^{2}}{1-r^{2}}. \end{equation}$ (2.4)
3 Some Properties of the Classes $R_{m}^{s}(b, k, \lambda)$ and $K_{m}^{s}(\alpha, b, k, \lambda, \delta)$

We begin by stating the following result which involved the connections between $R_{m}^{s}(b, k, \lambda)$ and $R_{m}(1-b)$.

Theorem 3.1 Let $f\in R_{m}^{s}(b, k, \lambda)$. Then

$\begin{equation}\label{31} (1-\lambda)f_{k}(z)+{\lambda}zf_{k}^{\prime}(z)\in R_{m}(1-b)\qquad(z\in\mathbb{U}). \end{equation}$ (3.1)

Proof  Let

$\begin{equation}\label{32} F(z)=(1-\lambda)f(z)+{\lambda}zf^{\prime}(z) \end{equation}$ (3.2)

and

$\begin{equation}\label{33} F_{k}(z)=(1-\lambda)f_{k}(z)+\lambda zf_{k}^{\prime}(z). \end{equation}$ (3.3)

Then condition (1.2) can be written as

$\begin{equation}\label{34} 1+\frac{1}{b}\left(\frac{zF^{\prime}(z)}{F_{k}(z)}-1\right)=p(z) \end{equation}$ (3.4)

for some $p\in P_{m}$. Substituting $z$ by $\varepsilon^{\mu}z\, (\mu=0, 1, 2, \cdots, k-1)$ in (3.4) gives

$\begin{equation}\label{35} 1+\frac{1}{b}\left(\frac{\varepsilon^{\mu}zf^{\prime}(\varepsilon^{\mu}z)+\lambda(\varepsilon^{\mu}z)^{2}f^{\prime\prime}(\varepsilon^{\mu}z)}{(1-\lambda)f_{k}(\varepsilon^{\mu}z) +\lambda\varepsilon^{\mu}zf_{k}^{\prime}(\varepsilon^{\mu}z)}-1\right)=p(\varepsilon^{\mu}z) . \end{equation}$ (3.5)

We note that $f_{k}(\varepsilon^{\nu}z)=\varepsilon^{\nu}f_{k}(z)$, $f_{k}^{\prime}(\varepsilon^{\nu}z)=f_{k}^{\prime}(z)$ and $\varepsilon^{\mu}f_{k}^{\prime\prime}(\varepsilon^{\nu}z)=f_{k}^{\prime\prime}(z)$. Thus taking $\mu=0, 1, 2, \cdots, k-1$ in (3.5), respectively, and summing the resulting equations, we get

$1 + \frac{1}{b}\left( {\frac{{zF_k^\prime (z)}}{{{F_k}(z)}} - 1} \right) = \frac{1}{k}\sum\limits_{\mu = 0}^{k - 1} p ({\varepsilon ^\mu }z).$ (3.6)

Since $P_{m}$ is a convex set, it is clear that

$\begin{equation}\label{37} 1+\frac{1}{b}\left(\frac{zF_{k}^{\prime}(z)}{F_{k}(z)}-1\right)\in P_{m}, \end{equation}$ (3.7)

which implies that

$\begin{equation}\label{38} \frac{zF_{k}^{\prime}(z)}{F_{k}(z)}\in P_{m}(1-b) \end{equation}$ (3.8)

and hence $F_{k}(z)\in R_{m}(1-b)$.

Next, we give the integral representations of functions belonging to the class $R_{m}^{s}(b, k, \lambda)$.

Theorem 3.2 Let $f\in R_{m}^{s}(b, k, \lambda)$ with $0<\lambda\leq1$. Then

${f_k}(z) = \frac{1}{\lambda }{z^{1 - \frac{1}{\lambda }}}\int_0^z {{\rm{exp}}} \left( {\frac{b}{k}\sum\limits_{\mu = 0}^{k - 1} {\int_0^{{\varepsilon ^\mu }u} {\frac{{p(\xi ) - 1}}{\xi }} } d\xi } \right){u^{\frac{1}{\lambda } - 1}}du$ (3.9)

for some $p\in P_{m}$.

Proof  Suppose that $f\in R_{m}^{s}(b, k, \lambda)$. From (1.2), we get

$\begin{equation}\label{40} \frac{zf^{\prime}(z)+\lambda z^{2}f^{\prime\prime}(z)}{(1-\lambda)f_{k}(z)+\lambda zf^{\prime}_{k}(z)}=b\left(p(z)-1\right)+1 \end{equation}$ (3.10)

for some $p\in P_{m}$. Substituting $z$ by $\varepsilon^{\mu}z\ (\mu=0, 1, 2, \cdots, k-1)$ in (3.10), we have

$\begin{equation}\label{41} \frac{\varepsilon^{\mu}zf^{\prime}(\varepsilon^{\mu}z)+\lambda(\varepsilon^{\mu}z)^{2}f^{\prime\prime}(\varepsilon^{\mu}z)}{(1-\lambda)f_{k}(\varepsilon^{\mu}z)+\lambda \varepsilon^{\mu}zf^{\prime}_{k}(\varepsilon^{\mu}z)}=b\left(p(\varepsilon^{\mu}z)-1\right)+1. \end{equation}$ (3.11)

By observing that $f_{k}(\varepsilon^{\mu}z)=\varepsilon^{\mu}f_{k}(z)$ and $f_{k}^{\prime}(\varepsilon^{\mu}z)=f_{k}^{\prime}(z)$, we know that (3.11) can be written as

$\begin{equation}\label{42} \frac{zf^{\prime}(\varepsilon^{\mu}z)+\lambda \varepsilon^{\mu}z^{2}f^{\prime\prime}(\varepsilon^{\mu}z)}{(1-\lambda)f_{k}(z)+\lambda zf^{\prime}_{k}(z)}=b\left(p(\varepsilon^{\mu}z)-1\right)+1. \end{equation}$ (3.12)

Taking $\mu=0, 1, 2, \cdots, k-1$ in (3.12), respectively, and summing the resulting equations, we obtain

$\frac{{zf_k^\prime (z) + \lambda {z^2}f_k^{\prime \prime }(z)}}{{(1 - \lambda ){f_k}(z) + \lambda zf_k^\prime (z)}} = \frac{1}{k}\sum\limits_{\mu = 0}^{k - 1} {\left( {b\left( {p({\varepsilon ^\mu }z) - 1} \right) + 1} \right)} ,$ (3.13)

which follows that

$\frac{{(1 - \lambda )f_k^\prime (z) + \lambda {{(zf_k^\prime (z))}^\prime }}}{{(1 - \lambda ){f_k}(z) + \lambda zf_k^\prime (z)}} - \frac{1}{z} = \frac{b}{k}\sum\limits_{\mu = 0}^{k - 1} {\frac{{p({\varepsilon ^\mu }z) - 1}}{z}} .$ (3.14)

Integrating (3.14), we get

${\rm{log}}\left( {\frac{{(1 - \lambda ){f_k}(z) + \lambda zf_k^\prime (z)}}{z}} \right) = \frac{b}{k}\sum\limits_{\mu = 0}^{k - 1} {\int_0^{{\varepsilon ^\mu }z} {\frac{{p(\xi ) - 1}}{\xi }} } d\xi $ (3.15)

or equivalently

$(1 - \lambda ){f_k}(z) + \lambda zf_k^\prime (z) = z \cdot {\rm{exp}}\left( {\frac{b}{k}\sum\limits_{\mu = 0}^{k - 1} {\int_0^{{\varepsilon ^\mu }z} {\frac{{p(\xi ) - 1}}{\xi }} } d\xi } \right).$ (3.16)

The assertion of Theorem 3.2 can now be derived from (3.16).

Theorem 3.3 Let $f\in R_{m}^{s}(b, k, \lambda)$ with $0<\lambda\leq1$. Then

$f(z) = \frac{1}{\lambda }{z^{1 - \frac{1}{\lambda }}}\int_0^z {\int_0^u {{\rm{exp}}} } \left( {\frac{b}{k}\sum\limits_{\mu = 0}^{k - 1} {\int_0^{{\varepsilon ^\mu }\xi } {\frac{{p(t) - 1}}{t}} } dt} \right) \cdot \left( {b\left( {p(\xi ) - 1} \right) + 1} \right)d\xi {u^{\frac{1}{\lambda } - 2}}du$ (3.17)

for some $p\in P_{m}$.

Proof  Suppose that $f\in R_{m}^{s}(b, k, \lambda)$. From (1.2) and (3.16), we have

$\begin{align}\label{48}\begin{split} (1-\lambda)f^{\prime}(z)+\lambda(zf^{\prime}(z))^{\prime}&=\frac{(1-\lambda)f_{k}(z)+\lambda zf_{k}^{\prime}(z)}{z}\cdot\left(b\left(p(z)-1\right)+1\right)\\ &={\rm{exp}}\left(\frac{b}{k}\sum_{\mu=0}^{k-1}\int_{0}^{\varepsilon^{\mu }z}\frac{p(t)-1}{t}dt\right)\cdot\left(b\left(p(z)-1\right)+1\right).\end{split} \end{align}$ (3.18)

Integrating (3.18) yields

$(1 - \lambda )f(z) + \lambda z{f^\prime }(z) = \int_0^z {{\rm{exp}}} \left( {\frac{b}{k}\sum\limits_{\mu = 0}^{k - 1} {\int_0^{{\varepsilon ^\mu }\xi } {\frac{{p(t) - 1}}{t}} } dt} \right) \cdot \left( {b\left( {p(\xi ) - 1} \right) + 1} \right)d\xi .$ (3.19)

From (3.19), we can get (3.17) easily.

In what follows, we provide some coefficient inequalities and covering theorems for functions in the class $R_{m}^{s}(b, k, \lambda)$.

Theorem 3.4 Let $f\in R_{m}^{s}(b, k, \lambda)$ with $k\geq2$. Then

$\begin{equation}\label{50} |{a_{2}}|\leq\frac{m{b}}{2(1+\lambda)}. \end{equation}$ (3.20)

Proof Suppose that $f\in R_{m}^{s}(b, k, \lambda)$. In view of Theorem 3.1, there exists a function $\phi\in R_{m}(1-b)$, $\phi(z)=(1-\lambda)f_{k}(z)+\lambda zf_{k}^{\prime}(z)$ such that

$\begin{equation}\label{52} zf^{\prime}(z)+\lambda z^{2}f^{\prime\prime}(z)=\phi(z) p(z) \end{equation}$ (3.21)

for some $p\in P_{m}(1-b)$. Using the fact that

$\begin{equation}\label{53}\begin{split} f_{k}(z)=\frac{1}{k}\sum_{\nu=0}^{k-1}\varepsilon^{-\nu}f(\varepsilon^{\nu}z)=\frac{1}{k}\sum_{\nu=0}^{k-1}\left(\varepsilon^{\nu}z+\sum_{n=2}^{\infty} a_{n}(\varepsilon^{\nu}z)^{n}\right)=z+\sum_{l=2}^{\infty}a_{(l-1)k+1}z^{(l-1)k+1}, \end{split} \end{equation}$ (3.22)

we have

$\begin{equation}\phi(z)=z+\mathop \sum \limits_{l = 2}^\infty [1+\lambda(l-1)k]a_{(l-1)k+1}z^{(l-1)k+1}. \end{equation}$ (3.23)

Let

$p(z) = 1 + \sum\limits_{n = 1}^\infty {{c_n}} {z^n}.$ (3.24)

Then we find from (3.21) that

$\begin{equation}\label{56} z+\mathop \sum \limits_{n = 2}^\infty n[1+\lambda(n-1)]a_{n}z^{n}=\left(z+\mathop \sum \limits_{l = 2}^\infty [1+\lambda(l-1)k]a_{(l-1)k+1}z^{(l-1)k+1}\right)\left(1+\mathop \sum \limits_{n = 1}^\infty c_{n}z^{n}\right). \end{equation}$ (3.25)

Comparing the coefficients $z^{2}$ in both sides of (3.25), we get $2(1+\lambda)a_{2}=c_{1}$, which follows that

$|{a_2}| \le \frac{{|{c_1}|}}{{2(1 + \lambda )}}.$ (3.26)

Since ${|c_{1}|}\leq m{b}$ for $p\in P_{m}(1-b)$, we get the desired assertion of Theorem 3.4.

Theorem 3.5 Let $f\in R_{m}^{s}(b, k, \lambda)$ with $k\geq2$. Then the unit disk $\mathbb{U}$ is mapped by every univalent function $f$ onto a domain that contains the disk ${|\omega|}<r_{1}$, where

$\begin{equation}\label{58} r_{1}=\frac{2(1+\lambda)}{4(1+\lambda)+m{b}}. \end{equation}$ (3.27)

Proof  Suppose that $f\in R_{m}^{s}(b, k, \lambda)$. Also, let $\omega_{0}$ be any complex number such that $f(z)\neq\omega_{0}$ for $z\in\mathbb{U}$, then $\omega_{0}\neq0$ and

$\begin{equation}\label{59} \frac{\omega_{0}f(z)}{\omega_{0}-f(z)}=z+\left(a_{2}+\frac{1}{\omega_{0}}\right)z^{2}+\cdots \end{equation}$ (3.28)

for every univalent function $f$. This leads to

$\begin{equation}\label{60} |{a_{2}+\frac{1}{\omega_{0}}}|\leq2 \end{equation}$ (3.29)

and hence

$|{\omega _0}| \ge \frac{1}{{|{a_2}| + 2}}.$ (3.30)

Using (3.30) and Theorem 3.4, we obtain the required result.

Let $L_{r}f(z)$ denote the length of the image of the circle $|z|=r$ under $f(z)$. we finally show some basic properties of functions in the class $K_{m}^{s}(\alpha, b, k, \lambda, \delta)$ including arc-length and coefficient problems.

Theorem 3.6 Suppose that $f\in K_{m}^{s}(\alpha, b, k, \lambda, \delta)$ with $0<\lambda\leq1$ and $0<b\leq1$. Then

$\begin{equation}\label{62} L_{r}f(z)\leq \begin{cases} C(\alpha, b, \delta, m)M(r)^{1-\alpha}\left(\frac{1}{1-r}\right)^{\frac{4\alpha b+1}{2}}&\quad(0<\alpha\leq1), \\ C(\alpha, b, \delta, m)N(r)^{1-\alpha}\left(\frac{1}{1-r}\right)^{\frac{4\alpha b+1}{2}}&\quad(\alpha>1), \end{cases} \end{equation}$ (3.31)

where $N(r)=\min\limits_{{|z|}=r}{|f(z)|}$, $M(r)=\max\limits_{{|z|}=r}{|f(z)|}$, and $C(\alpha, b, \delta, m)$ is a constant which is determined by the parameters $\alpha, b, \delta$ and $m$.

Proof  Suppose that $f\in K_{m}^{s}(\alpha, b, k, \lambda, \delta)$. From definition (1.4), we know that

$\frac{{z{f^\prime }(z)}}{{f(z)}}{\left( {\frac{{f(z)}}{{{g_k}(z)}}} \right)^\alpha } = p(z)$ (3.32)

for some $p\in P_{m}(\delta)$. It follows that

$\begin{equation}\label{64} zf^{\prime}(z)=(f(z))^{1-\alpha}\left(g_{k}(z)\right)^{\alpha}p(z). \end{equation}$ (3.33)

For $0<\alpha\leq1$, we find from (3.33) that

$\begin{equation}\label{65}\begin{split} L_{r}f(z)=\int_{0}^{2\pi}{|zf^{\prime}(z)|}d\theta\leq\int_{0}^{2\pi}{|f(z)|}^{1-\alpha}{|g_{k}(z)|}^{\alpha}{|p(z)|}d\theta\leq M^{1-\alpha}(r)\int_{0}^{2\pi}{|g_{k}(z)|}^{\alpha}{|p(z)|}d\theta, \end{split} \end{equation}$ (3.34)

where $M(r)=\max\limits_{{|z|}=r}{|f(z)|}$. Since $g\in R_{2}^{s}(b, k, \lambda)$, from Theorem 3.1, we have

$\begin{equation}\label{66} (1-\lambda)g_{k}(z)+\lambda zg_{k}^{\prime}(z)=G_{k}(z)\in R_{2}(1-b)\equiv S^{*}(1-b). \end{equation}$ (3.35)

Let $q(z)=\frac{zg_{k}^{\prime}(z)}{g_{k}(z)}$. It follows from (3.35) that

$\begin{equation}\label{660} \frac{G_{k}(z)}{g_{k}(z)}=1-\lambda+\lambda q(z). \end{equation}$ (3.36)

Differentiate both sides of (3.36) logarithmically, we obtain

$\begin{equation}\label{67} q(z)+\frac{zq^{\prime}(z)}{q(z)+\frac{1-\lambda}{\lambda}}=\frac{zG_{k}^{\prime}(z)}{G_{k}(z)}\prec\frac{1+(2b-1)z}{1-z}. \end{equation}$ (3.37)

By noting that

${\rm{Re}}\left[\frac{1+(2b-1)z}{1-z}+\frac{1-\lambda}{\lambda}\right]>0\qquad(0<b\leq1;\ 0<\lambda\leq1), $

an application of Lemma 2.1 to (3.37) yields

$\begin{equation}\label{68} q(z)\prec\frac{1+(2b-1)z}{1-z}, \end{equation}$ (3.38)

which implies that $g_{k}(z)\in S^{*}(1-b)$. By Lemma 2.2, we have

$\begin{equation}\label{69} \frac{r}{(1+r)^{2b}}\leq{g_{k}(z)}\leq\frac{r}{(1-r)^{2b}}. \end{equation}$ (3.39)

Using (3.39) and Lemma 2.3, we deduce from (3.34) that

$\begin{equation}\label{70}\begin{split} L_{r}f(z)&\leq M(r)^{1-\alpha}\frac{r^{\alpha}}{(1-r)^{2\alpha b}}\int_{0}^{2\pi}{|p(z)|}d\theta\\ &\leq 2\pi M(r)^{1-\alpha}\frac{r^{\alpha}}{(1-r)^{2\alpha b}}\left(\frac{1}{2\pi}\int_{0}^{2\pi}{|p(z)|}^{2}d\theta\right)^{\frac{1}{2}}\\ &\leq 2\pi M(r)^{1-\alpha}\frac{r^{\alpha}}{(1-r)^{2\alpha b}}\left(\frac{1+[m^{2}(1-\delta)^{2}-1]r^{2}}{1-r^{2}}\right)^{\frac{1}{2}}\\ &=C(\alpha, b, \delta, m)M(r)^{1-\alpha}\left(\frac{1}{1-r}\right)^{\frac{4\alpha b+1}{2}}.\end{split} \end{equation}$ (3.40)

Similarly, for $\alpha>1$, we have

$L_{r}f(z)\leqq C(\alpha, b, \delta, m)N(r)^{1-\alpha}\left(\frac{1}{1-r}\right)^{\frac{4\alpha b+1}{2}}.$

Theorem 3.7 Let $f\in K_{m}^{s}(\alpha, b, k, \lambda, \delta)$ with $0<\lambda\leq1$ and $0<b\leq1$. Then

$\begin{equation}\label{72} \left| {{{a}_{n}}} \right|\leq \begin{cases} C_{1}(\alpha, b, \delta, m)M(n)^{{1-\alpha}}n^{\frac{4\alpha b-1}{2}}&\quad(0<\alpha\leq1), \\ C_{1}(\alpha, b, \delta, m)N(n)^{{1-\alpha}}n^{\frac{4\alpha b-1}{2}}&\quad(\alpha>1).\\ \end{cases} \end{equation}$ (3.41)

Proof  Suppose that $f\in K_{m}^{s}(\alpha, b, k, \lambda, \delta)$. For $n\geq1$ and $z=re^{i\theta}$, Cauchy's Theorem gives that

$\begin{equation}\label{73} na_{n}=\frac{1}{2\pi r^{n}}\int_{0}^{2\pi}zf^{\prime}(z)e^{-in\theta}d\theta. \end{equation}$ (3.42)

Using Theorem 3.6 for $0<\alpha\leq1$, we get

$n\left| {{a_n}} \right| \le \frac{1}{{2\pi {r^n}}}C(\alpha ,b,\delta ,m)M{(r)^{1 - \alpha }}{\left( {\frac{1}{{1 - r}}} \right)^{\frac{{4\alpha b + 1}}{2}}}.$ (3.43)

Taking $r=1-\frac{1}{n}$ in (3.43), we obtain

$\begin{equation}\label{75} \left| {{{a}_{n}}} \right|\leq C_{1}(\alpha, b, \delta, m)M(n)^{1-\alpha}n^{\frac{4\alpha b-1}{2}}. \end{equation}$ (3.44)

Using the similar techniques, we can prove the corresponding result for $\alpha>1$.

Theorem 3.8 Let $f\in K_{m}^{s}(\alpha, b, k, \lambda, \delta)$ with $0<\lambda\leq1$ and $0<b\leq1$. Then

$\begin{equation}\label{76} \left\| {{{a}_{{n}{\rm{ + 1}}}}\left| {\rm{ - }} \right|{{a}_{n}}} \right\|\leq \begin{cases} C_{2}(\alpha, b, \delta, m)M(r)^{1-\alpha}\left(\frac{1}{1-r}\right)^{\frac{1}{2}}&\quad(0<\alpha\leq1), \\ C_{2}(\alpha, b, \delta, m)N(r)^{1-\alpha}\left(\frac{1}{1-r}\right)^{\frac{4(\alpha-1)b+1}{2}}&\quad(\alpha>1).\\ \end{cases} \end{equation}$ (3.45)

Proof  It is known that for $\xi\in\mathbb{U}, z=re^{i\theta}$ and $n\geq1$, one has

$\begin{equation}\label{77} {|(n+1)\xi a_{n+1}-na_{n}|}\leq\int_{0}^{2\pi}{|z-\xi}{zf^{\prime}(z)|}d\theta. \end{equation}$ (3.46)

Since $f\in K_{m}^{s}(\alpha, b, k, \lambda, \delta)$, we obtain

$\begin{equation}\label{640} zf^{\prime}(z)=(f(z))^{1-\alpha}\left(g_{k}(z)\right)^{\alpha}p(z) \end{equation}$ (3.47)

and

$\begin{equation}\label{690} \frac{r}{(1+r)^{2b}}\leq{g_{k}(z)}\leq\frac{r}{(1-r)^{2b}}. \end{equation}$ (3.48)

For $0<\alpha\leq1$, combining (3.47), (3.48) and (3.46), we get

$\begin{equation}\label{80} {|(n+1)\xi a_{n+1}-na_{n}|}\leq M(r)^{1-\alpha}\frac{r^{\alpha-1}}{(1+r)^{2(\alpha-1) b}}\int_{0}^{2\pi}|{z-\xi}||{g_{k}(z)}||{p(z)|}d\theta. \end{equation}$ (3.49)

By Lemmas 2.3 and 2.4, we deduce that

$\begin{equation*}\label{81}\begin{split} {|(n+1)\xi a_{n+1}-na_{n}|}&\leq M(r)^{1-\alpha}\frac{r^{\alpha-1}}{(1+r)^{2(\alpha-1) b}}\frac{2r^{2}}{1-r^{2}}\int_{0}^{2\pi}{|p(z)|}d\theta\\ &\leq 2\pi M(r)^{1-\alpha}\frac{r^{\alpha-1}}{(1+r)^{2(\alpha-1) b}}\frac{2r^{2}}{1-r^{2}}\left(\frac{1}{2\pi}\int_{0}^{2\pi}{|p(z)|}^{2}d\theta\right)^{\frac{1}{2}}\\ &\leq 2\pi M(r)^{1-\alpha}\frac{r^{\alpha-1}}{(1+r)^{2(\alpha-1) b}}\frac{2r^{2}}{1-r^{2}}\left(\frac{1+[m^{2}(1-\delta)^{2}-1]r^{2}}{1-r^{2}}\right)^{\frac{1}{2}}.\end{split} \end{equation*}$

Putting ${\xi}=r=\frac{n}{n+1}$, it follows that

$\begin{equation*}\label{83} {{||a_{n+1}|}-{|a_{n}||}}\leq C_{2}(\alpha, b, \delta, m)M(n)^{1-\alpha}n^{\frac{1}{2}}. \end{equation*}$

Similarly, we can get the required result for $\alpha>1$.

References
[1] Arif M, Noor K I, Khan R. On subclass of analytic functions with respect to symmetrical points[J]. Abstr. Appl. Anal. , 2012, Article ID 790689, doi: 10.1155/2012/790689.
[2] Das R N, Singh P. On a subclass of schlicht mapping[J]. Indian J. Pure Appl. Math., 1977, 8: 864–872.
[3] Eenigenburg P J, Miller S S, Mocanu P T, Reade O M. Second order difierential inequalities in thecomplex plane[J]. J. Math. Anal. Appl., 1978, 65: 289–305. DOI:10.1016/0022-247X(78)90181-6
[4] Golusin G. M. On distortion theorems and coe–cients of univalent functions[J]. Matematicheskii Sbornik, 1946, 19: 183–202.
[5] Graham I, Kohr G. Geometric fuction theory in one and higher dimensions[M]. New Nork: Marcel Dekker, 2003.
[6] Huang Y Y, Liu M S. Properties of certain subclasses of multivalent analytic functions involvingthe Dziok-Srivastava operator[J]. Appl. Math. Comput., 2008, 204: 137–149.
[7] Noor K I. On subclasses of close-to-convex functions of higher order[J]. Intern. J. Math. Math. Sci., 1992, 15: 279–290. DOI:10.1155/S016117129200036X
[8] Noor K I. On some subclasses of m-fold symmetric analytic functions[J]. Comput. Math. Appl., 2010, 60: 14–22. DOI:10.1016/j.camwa.2010.04.022
[9] Noor K I, Malikz B, Saima Mustafax. A survey on functions of bounded boundary and boundedradius rotation[J]. Appl. Math. E-Notes, 2012, 12: 136–152.
[10] Noor K I, Mustafa S. Some classes of analytic functions related with functions of bounded radiusrotation with respect to symmetrical points[J]. J. Math. Inequ., 2009, 3: 267–276.
[11] Padmanabhan K S, Parvatham R. Properties of a class of functions with bounded boundary rotation[J]. Ann. Polonici Math., 1975, 31: 311–323.
[12] Pinchuk B. Functions of bounded boundary rotation[J]. Israel J. Math., 1971, 10: 7–16.
[13] Sakaguchi K. On a certain univalent mapping[J]. Journal of the Math. Soc. Japan, 1959, 11: 72–75. DOI:10.2969/jmsj/01110072
[14] Wang Z G, Gao C Y, Yuan S M. On certain subclasses of close-to-convex and quasi-convex functionswith respect to k-symmetric points[J]. J. Math. Anal. Appl., 2006, 322: 97–106. DOI:10.1016/j.jmaa.2005.08.060
[15] Wang Z G, Jiang Y P, Srivastava H M. Some subclasses of multivalent analytic functions involvingDziok-Srivastava operator[J]. Integ. Trans. Special Funct., 2008, 19: 129–146. DOI:10.1080/10652460701635456
[16] Yuan S M, Liu Z M. Some properties of α-convex and α-quasiconvex functions with respect ton-symmetric points[J]. Appl. Math. Comput., 2007, 188: 1142–1150.
[17] Yuan S M, Liu Z M. Some properties of two subclasses of k-fold symmetric functions associatedwith Srivastava-Attiya operator[J]. Appl. Math. Comput., 2011, 218: 1136–1141.