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Abstract: In this article, we introduce two new subclasses Rs
m(b, k, λ) and Ks

m(α, b, k, λ, δ)

of analytic functions with respect to k-symmetric points. By using the principle of subordination,

we obtain the integral representations, coefficient inequalities, covering theorems and arc-length

estimates for these function classes, which would provide extensions of those given in earlier works.
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1 Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑

n=2

anzn, (1.1)

which are analytic in the unit disk U := {z : |z| < 1}.
Let S, S∗(γ), C(γ),K(γ) be the subclasses of A whose members are univalent, starlike

of order γ, convex of order γ, and close-to-convex of order γ, respectively, where 0 ≤ γ < 1.
Let f and g be analytic in U. Then f is said to be subordinate to g, written f ≺ g, if

there exists an analytic function ω(z), with ω(0) = 0 and |w(z)| < 1 such tat f(z) = g(ω(z)).
Indeed, it is known that

f(z) ≺ g(z)(z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the following equivalence:

f(z) ≺ g(z)(z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).
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Sakaguchi [13] introduced a class S∗s of starlike functions with respect to symmetric
points which satisfy the inequality

Re
(

zf ′(z)
f(z)− f(−z)

)
> 0 (z ∈ U).

Since then, many authors discussed this class and its subclasses. Also, a function f(z) ∈ A
is in the class Cs if and only if zf ′(z) ∈ S∗s .

Let Pm(γ) be the class of functions p analytic in U satisfying the conditions p(0) = 1
and ∫ 2π

0

∣∣∣∣
Re(p(z))− γ

1− γ

∣∣∣∣ dθ ≤ mπ (0 ≤ γ < 1; m ≥ 2; z = reiθ).

This class was introduced in [11]. We note that Pm(0) ≡ Pm is introduced in [12] and
P2(γ) ≡ P (γ) is the class of functions with positive real part of order γ. With m = 2, γ = 0,
we have the class P of functions with positive real part.

The classes Vm(γ) of functions of bounded boundary rotation of order γ and Rm(γ) of
functions of bounded radius rotation of order γ are closely related with Pm(γ). A function
f ∈ A is said to be in the class Vm(γ) if and only if

(zf ′(z))′

f ′(z)
∈ Pm(γ) (z ∈ U).

Moreover, we know that

f ∈ Rm(γ) ⇐⇒ zf ′(z)
f(z)

∈ Pm(γ) (z ∈ U).

Motivated essentially by the above work, we introduce and study the following classes
Rs

m(b, k, λ) and Ks
m(α, b, k, λ, δ) with respect to k-symmetric points.

Definition 1.1 Suppose that b ∈ C \ {0}, 0 ≤ λ ≤ 1, m ≥ 2 and k is a fixed positive
integer. A function f ∈ A is said to be in the class Rs

m(b, k, λ) if and only if

1 +
1
b

{
zf ′(z) + λz2f ′′(z)

(1− λ)fk(z) + λzf ′k(z)
− 1

}
∈ Pm (z ∈ U), (1.2)

where fk(z) is defined by

fk(z) =
1
k

k−1∑
ν=0

ε−νf(ενz)
(

z ∈ U; ε = exp
(

2πi

k

))
. (1.3)

Remark 1.1 For some recent investigations on analytic functions involving k-symmetric
points, one can refer to [6, 14–17].

Definition 1.2 Let α > 0, m ≥ 2 and 0 ≤ δ < 1. A function f ∈ A is said to be in
the class Ks

m(α, b, k, λ, δ) if and only if

zf ′(z)
f(z)

(
f(z)
gk(z)

)α

∈ Pm(δ) (z ∈ U) (1.4)
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for some g ∈ Rs
2(b, k, λ).

Remark 1.2 For special choices of α, b, k, λ,m and δ, several related function classes
have been studied extensively, see for example [1, 2, 8–10].

In the present paper, we aim at proving some basic properties of the classes Rs
m(b, k, λ)

and Ks
m(α, b, k, λ, δ). Such results as integral representations, coefficient inequalities, cover-

ing theorems and arc-length estimates are derived. The results presented here would provide
extensions of those given in earlier works.

2 Preliminary Results

In order to prove our main results, we need the following lemmas.
Lemma 2.1 (see [3]) Let h be convex in U with Re(βh(z) + γ) > 0. If q is analytic

in U with q(0) = h(0), then

q(z) +
zq′(z)

βq(z) + γ
≺ h(z) =⇒ q(z) ≺ h(z). (2.1)

Lemma 2.2 (see [5]) If f ∈ S∗(α), 0 ≤ α < 1 and |z| = r < 1, then

r

(1 + r)2(1−α)
≤ |f(z)| ≤ r

(1− r)2(1−α)
. (2.2)

Lemma 2.3 (see [7]) Let p ∈ Pm(γ) and |z| = r < 1. Then

1
2π

∫ 2π

0

|p(z)|2 dθ ≤ 1 + [m2(1− γ)2 − 1]r2

1− r2
. (2.3)

Lemma 2.4 (see [4]) Let q be univalent in U. Then there exists a point ξ with |ξ| = r

such that for all z, |z| = r,

|z − ξ| |q(z)| ≤ 2r2

1− r2
. (2.4)

3 Some Properties of the Classes Rs
m(b, k, λ) and Ks

m(α, b, k, λ, δ)

We begin by stating the following result which involved the connections between Rs
m(b, k, λ)

and Rm(1− b).
Theorem 3.1 Let f ∈ Rs

m(b, k, λ). Then

(1− λ)fk(z) + λzf ′k(z) ∈ Rm(1− b) (z ∈ U). (3.1)

Proof Let

F (z) = (1− λ)f(z) + λzf ′(z) (3.2)

and

Fk(z) = (1− λ)fk(z) + λzf ′k(z). (3.3)
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Then condition (1.2) can be written as

1 +
1
b

(
zF ′(z)
Fk(z)

− 1
)

= p(z) (3.4)

for some p ∈ Pm. Substituting z by εµz (µ = 0, 1, 2, · · · , k − 1) in (3.4) gives

1 +
1
b

(
εµzf ′(εµz) + λ(εµz)2f ′′(εµz)
(1− λ)fk(εµz) + λεµzf ′k(εµz)

− 1
)

= p(εµz). (3.5)

We note that fk(ενz) = ενfk(z), f ′k(ε
νz) = f ′k(z) and εµf ′′k (ενz) = f ′′k (z). Thus taking

µ = 0, 1, 2, · · · , k − 1 in (3.5), respectively, and summing the resulting equations, we get

1 +
1
b

(
zF ′

k(z)
Fk(z)

− 1
)

=
1
k

k−1∑
µ=0

p(εµz). (3.6)

Since Pm is a convex set, it is clear that

1 +
1
b

(
zF ′

k(z)
Fk(z)

− 1
)
∈ Pm, (3.7)

which implies that
zF ′

k(z)
Fk(z)

∈ Pm(1− b) (3.8)

and hence Fk(z) ∈ Rm(1− b).
Next, we give the integral representations of functions belonging to the class Rs

m(b, k, λ).
Theorem 3.2 Let f ∈ Rs

m(b, k, λ) with 0 < λ ≤ 1. Then

fk(z) =
1
λ

z1− 1
λ

∫ z

0

exp

(
b

k

k−1∑
µ=0

∫ εµu

0

p(ξ)− 1
ξ

dξ

)
u

1
λ−1du (3.9)

for some p ∈ Pm.
Proof Suppose that f ∈ Rs

m(b, k, λ). From (1.2), we get

zf ′(z) + λz2f ′′(z)
(1− λ)fk(z) + λzf ′k(z)

= b (p(z)− 1) + 1 (3.10)

for some p ∈ Pm. Substituting z by εµz (µ = 0, 1, 2, · · · , k − 1) in (3.10), we have

εµzf ′(εµz) + λ(εµz)2f ′′(εµz)
(1− λ)fk(εµz) + λεµzf ′k(εµz)

= b (p(εµz)− 1) + 1. (3.11)

By observing that fk(εµz) = εµfk(z) and f ′k(ε
µz) = f ′k(z), we know that (3.11) can be

written as
zf ′(εµz) + λεµz2f ′′(εµz)
(1− λ)fk(z) + λzf ′k(z)

= b (p(εµz)− 1) + 1. (3.12)
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Taking µ = 0, 1, 2, · · · , k − 1 in (3.12), respectively, and summing the resulting equations,
we obtain

zf ′k(z) + λz2f ′′k (z)
(1− λ)fk(z) + λzf ′k(z)

=
1
k

k−1∑
µ=0

(b (p(εµz)− 1) + 1) , (3.13)

which follows that

(1− λ)f ′k(z) + λ(zf ′k(z))′

(1− λ)fk(z) + λzf ′k(z)
− 1

z
=

b

k

k−1∑
µ=0

p(εµz)− 1
z

. (3.14)

Integrating (3.14), we get

log
(

(1− λ)fk(z) + λzf ′k(z)
z

)
=

b

k

k−1∑
µ=0

∫ εµz

0

p(ξ)− 1
ξ

dξ (3.15)

or equivalently

(1− λ)fk(z) + λzf ′k(z) = z · exp

(
b

k

k−1∑
µ=0

∫ εµz

0

p(ξ)− 1
ξ

dξ

)
. (3.16)

The assertion of Theorem 3.2 can now be derived from (3.16).
Theorem 3.3 Let f ∈ Rs

m(b, k, λ) with 0 < λ ≤ 1. Then

f(z) =
1
λ

z1− 1
λ

∫ z

0

∫ u

0

exp

(
b

k

k−1∑
µ=0

∫ εµξ

0

p(t)− 1
t

dt

)
· (b (p(ξ)− 1) + 1) dξu

1
λ−2du (3.17)

for some p ∈ Pm.
Proof Suppose that f ∈ Rs

m(b, k, λ). From (1.2) and (3.16), we have

(1− λ)f ′(z) + λ(zf ′(z))′ =
(1− λ)fk(z) + λzf ′k(z)

z
· (b (p(z)− 1) + 1)

= exp

(
b

k

k−1∑
µ=0

∫ εµz

0

p(t)− 1
t

dt

)
· (b (p(z)− 1) + 1) .

(3.18)

Integrating (3.18) yields

(1− λ)f(z) + λzf ′(z) =
∫ z

0

exp

(
b

k

k−1∑
µ=0

∫ εµξ

0

p(t)− 1
t

dt

)
· (b (p(ξ)− 1) + 1) dξ. (3.19)

From (3.19), we can get (3.17) easily.
In what follows, we provide some coefficient inequalities and covering theorems for

functions in the class Rs
m(b, k, λ).

Theorem 3.4 Let f ∈ Rs
m(b, k, λ) with k ≥ 2. Then

|a2| ≤ m |b|
2(1 + λ)

. (3.20)
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Proof Suppose that f ∈ Rs
m(b, k, λ). In view of Theorem 3.1, there exists a function

φ ∈ Rm(1− b), φ(z) = (1− λ)fk(z) + λzf ′k(z) such that

zf ′(z) + λz2f ′′(z) = φ(z)p(z) (3.21)

for some p ∈ Pm(1− b). Using the fact that

fk(z) =
1
k

k−1∑
ν=0

ε−νf(ενz) =
1
k

k−1∑
ν=0

(
ενz +

∞∑
n=2

an(ενz)n

)
= z +

∞∑
l=2

a(l−1)k+1z
(l−1)k+1,

(3.22)

we have

φ(z) = z +
∞∑

l=2

[1 + λ(l − 1)k]a(l−1)k+1z
(l−1)k+1. (3.23)

Let

p(z) = 1 +
∞∑

n=1

cnzn. (3.24)

Then we find from (3.21) that

z +
∞∑

n=2

n[1 + λ(n− 1)]anzn =

(
z +

∞∑
l=2

[1 + λ(l − 1)k]a(l−1)k+1z
(l−1)k+1

)(
1 +

∞∑
n=1

cnzn

)
.

(3.25)
Comparing the coefficients z2 in both sides of (3.25), we get 2(1 + λ)a2 = c1, which follows
that

|a2| ≤ |c1|
2(1 + λ)

. (3.26)

Since |c1| ≤ m |b| for p ∈ Pm(1− b), we get the desired assertion of Theorem 3.4.
Theorem 3.5 Let f ∈ Rs

m(b, k, λ) with k ≥ 2. Then the unit disk U is mapped by
every univalent function f onto a domain that contains the disk |ω| < r1, where

r1 =
2(1 + λ)

4(1 + λ) + m |b| . (3.27)

Proof Suppose that f ∈ Rs
m(b, k, λ). Also, let ω0 be any complex number such that

f(z) 6= ω0 for z ∈ U, then ω0 6= 0 and

ω0f(z)
ω0 − f(z)

= z +
(

a2 +
1
ω0

)
z2 + · · · (3.28)

for every univalent function f . This leads to
∣∣∣∣a2 +

1
ω0

∣∣∣∣ ≤ 2 (3.29)

and hence
|ω0| ≥ 1

|a2|+ 2
. (3.30)
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Using (3.30) and Theorem 3.4, we obtain the required result.
Let Lrf(z) denote the length of the image of the circle |z| = r under f(z). we finally

show some basic properties of functions in the class Ks
m(α, b, k, λ, δ) including arc-length and

coefficient problems.
Theorem 3.6 Suppose that f ∈ Ks

m(α, b, k, λ, δ) with 0 < λ ≤ 1 and 0 < b ≤ 1. Then

Lrf(z) ≤




C(α, b, δ,m)M(r)1−α
(

1
1−r

) 4αb+1
2 (0 < α ≤ 1),

C(α, b, δ,m)N(r)1−α
(

1
1−r

) 4αb+1
2 (α > 1),

(3.31)

where N(r) = min
|z|=r

|f(z)|, M(r) = max
|z|=r

|f(z)|, and C(α, b, δ,m) is a constant which is deter-

mined by the parameters α, b, δ and m.
Proof Suppose that f ∈ Ks

m(α, b, k, λ, δ). From definition (1.4), we know that

zf ′(z)
f(z)

(
f(z)
gk(z)

)α

= p(z) (3.32)

for some p ∈ Pm(δ). It follows that

zf ′(z) = (f(z))1−α (gk(z))α
p(z). (3.33)

For 0 < α ≤ 1, we find from (3.33) that

Lrf(z) =
∫ 2π

0

|zf ′(z)| dθ ≤
∫ 2π

0

|f(z)|1−α |gk(z)|α |p(z)| dθ ≤ M1−α(r)
∫ 2π

0

|gk(z)|α |p(z)| dθ,

(3.34)

where M(r) = max
|z|=r

|f(z)|. Since g ∈ Rs
2(b, k, λ), from Theorem 3.1, we have

(1− λ)gk(z) + λzg′k(z) = Gk(z) ∈ R2(1− b) ≡ S∗(1− b). (3.35)

Let q(z) = zg′k(z)

gk(z)
. It follows from (3.35) that

Gk(z)
gk(z)

= 1− λ + λq(z). (3.36)

Differentiate both sides of (3.36) logarithmically, we obtain

q(z) +
zq′(z)

q(z) + 1−λ
λ

=
zG′

k(z)
Gk(z)

≺ 1 + (2b− 1)z
1− z

. (3.37)

By noting that

Re
[
1 + (2b− 1)z

1− z
+

1− λ

λ

]
> 0 (0 < b ≤ 1; 0 < λ ≤ 1),

an application of Lemma 2.1 to (3.37) yields

q(z) ≺ 1 + (2b− 1)z
1− z

, (3.38)
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which implies that gk(z) ∈ S∗(1− b). By Lemma 2.2, we have

r

(1 + r)2b
≤ |gk(z)| ≤ r

(1− r)2b
. (3.39)

Using (3.39) and Lemma 2.3, we deduce from (3.34) that

Lrf(z) ≤ M(r)1−α rα

(1− r)2αb

∫ 2π

0

|p(z)| dθ

≤ 2πM(r)1−α rα

(1− r)2αb

(
1
2π

∫ 2π

0

|p(z)|2 dθ

) 1
2

≤ 2πM(r)1−α rα

(1− r)2αb

(
1 + [m2(1− δ)2 − 1]r2

1− r2

) 1
2

= C(α, b, δ,m)M(r)1−α

(
1

1− r

) 4αb+1
2

.

(3.40)

Similarly, for α > 1, we have

Lrf(z) 5 C(α, b, δ,m)N(r)1−α

(
1

1− r

) 4αb+1
2

.

Theorem 3.7 Let f ∈ Ks
m(α, b, k, λ, δ) with 0 < λ ≤ 1 and 0 < b ≤ 1. Then

|an| ≤
{

C1(α, b, δ,m)M(n)1−αn
4αb−1

2 (0 < α ≤ 1),

C1(α, b, δ,m)N(n)1−αn
4αb−1

2 (α > 1).
(3.41)

Proof Suppose that f ∈ Ks
m(α, b, k, λ, δ). For n ≥ 1 and z = reiθ, Cauchy’s Theorem

gives that

nan =
1

2πrn

∫ 2π

0

zf ′(z)e−inθdθ. (3.42)

Using Theorem 3.6 for 0 < α ≤ 1, we get

n |an| ≤ 1
2πrn

C(α, b, δ,m)M(r)1−α

(
1

1− r

) 4αb+1
2

. (3.43)

Taking r = 1− 1
n

in (3.43), we obtain

|an| ≤ C1(α, b, δ,m)M(n)1−αn
4αb−1

2 . (3.44)

Using the similar techniques, we can prove the corresponding result for α > 1.
Theorem 3.8 Let f ∈ Ks

m(α, b, k, λ, δ) with 0 < λ ≤ 1 and 0 < b ≤ 1. Then

||an+1| − |an|| ≤




C2(α, b, δ,m)M(r)1−α
(

1
1−r

) 1
2 (0 < α ≤ 1),

C2(α, b, δ,m)N(r)1−α
(

1
1−r

) 4(α−1)b+1
2 (α > 1).

(3.45)
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Proof It is known that for ξ ∈ U, z = reiθ and n ≥ 1, one has

|(n + 1)ξan+1 − nan| ≤
∫ 2π

0

|z − ξ| |zf ′(z)| dθ. (3.46)

Since f ∈ Ks
m(α, b, k, λ, δ), we obtain

zf ′(z) = (f(z))1−α (gk(z))α
p(z) (3.47)

and
r

(1 + r)2b
≤ |gk(z)| ≤ r

(1− r)2b
. (3.48)

For 0 < α ≤ 1, combining (3.47), (3.48) and (3.46), we get

|(n + 1)ξan+1 − nan| ≤ M(r)1−α rα−1

(1 + r)2(α−1)b

∫ 2π

0

|z − ξ| |gk(z)| |p(z)| dθ. (3.49)

By Lemmas 2.3 and 2.4, we deduce that

|(n + 1)ξan+1 − nan| ≤ M(r)1−α rα−1

(1 + r)2(α−1)b

2r2

1− r2

∫ 2π

0

|p(z)| dθ

≤ 2πM(r)1−α rα−1

(1 + r)2(α−1)b

2r2

1− r2

(
1
2π

∫ 2π

0

|p(z)|2 dθ

) 1
2

≤ 2πM(r)1−α rα−1

(1 + r)2(α−1)b

2r2

1− r2

(
1 + [m2(1− δ)2 − 1]r2

1− r2

) 1
2

.

Putting |ξ| = r = n
n+1

, it follows that

||an+1| − |an|| ≤ C2(α, b, δ,m)M(n)1−αn
1
2 .

Similarly, we can get the required result for α > 1.
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与k折对称点有关的解析函数族的一些新子族

石 磊,王智刚

(安阳师范学院数学与统计学院,河南安阳 455000)

摘要: 本文引入了两类与k折对称点有关的解析函数族的新子族. 利用从属理论, 得到了这些函数族

的积分表示、系数不等式、覆盖定理、弧长估计等结果. 所得结果推广了一些相关文献的结论.
关键词: 解析函数; k折对称点; 从属; 弧长
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