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Abstract: In this article, we introduce two new subclasses R;, (b, k,A) and K, («,b,k, )\, )
of analytic functions with respect to k-symmetric points. By using the principle of subordination,
we obtain the integral representations, coefficient inequalities, covering theorems and arc-length
estimates for these function classes, which would provide extensions of those given in earlier works.
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1 Introduction

Let A denote the class of functions f of the form

oo

f(2) :z—f—Zanz”, (1.1)
n=2
which are analytic in the unit disk U := {z : |z| < 1}.
Let S, S*(7),C(7), K(v) be the subclasses of A whose members are univalent, starlike
of order ~y, convex of order ~y, and close-to-convex of order -, respectively, where 0 < v < 1.
Let f and ¢ be analytic in U. Then f is said to be subordinate to g, written f < g, if
there exists an analytic function w(z), with w(0) = 0 and |w(z)| < 1 such tat f(z) = g(w(z)).
Indeed, it is known that

f(z) < 9(2)(z € U) = f(0) = ¢(0) and f(U) C g(U).
Furthermore, if the function g is univalent in U, then we have the following equivalence:

f(2) <9(z)(z € U) <= [(0) = g(0) and f(U) C g(U).
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Sakaguchi [13] introduced a class S! of starlike functions with respect to symmetric

points which satisfy the inequality

Re <f(z>2’:(fz()_z>) >0 (2eU).

Since then, many authors discussed this class and its subclasses. Also, a function f(z) € A
is in the class C; if and only if zf'(2) € S?.
Let P, () be the class of functions p analytic in U satisfying the conditions p(0) = 1
Re(p(z)) =~

27
/0 -7

This class was introduced in [11]. We note that P,,(0) = P,, is introduced in [12] and
Py(y) = P(7) is the class of functions with positive real part of order v. With m =2, v =0,

and

‘d@gmﬂ 0<y<1;m>2; z=re").

we have the class P of functions with positive real part.

The classes V() of functions of bounded boundary rotation of order v and R,, () of
functions of bounded radius rotation of order 7 are closely related with P, (). A function
f € Ais said to be in the class V,,(v) if and only if

GIR) € P,(v) (z €U).

f'(z)

Moreover, we know that
2f'(2)
f(z)

Motivated essentially by the above work, we introduce and study the following classes
R? (b, k,\) and K3, (c, b, k, A, d) with respect to k-symmetric points.

Definition 1.1 Suppose that b € C\ {0}, 0 < A <1, m > 2 and k is a fixed positive
integer. A function f € A is said to be in the class R? (b, k, \) if and only if

1 af) A2
ty {u N )

where fi(2) is defined by

Fu(z) = ;kia—{f(a"z) <z EU; &= exp (T)) . (1.3)

v=0

fe€R,(y) =

€ P,(v) (z € U).

} €P, (zeD), (1.2)

Remark 1.1 For some recent investigations on analytic functions involving k-symmetric
points, one can refer to [6, 14-17].

Definition 1.2 Let « >0, m > 2 and 0 < § < 1. A function f € A is said to be in
the class K7, (o, b, k, A, ) if and only if

2f'(2) (f (2)
f(z) \gx(2)

>a €P.(6) (z€D) (1.4)
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for some g € R5(b, k, A).

Remark 1.2 For special choices of «, b, k, A\, m and §, several related function classes
have been studied extensively, see for example [1, 2, 8-10].

In the present paper, we aim at proving some basic properties of the classes R? (b, k, \)
and K? (o, b, k, A\, 0). Such results as integral representations, coefficient inequalities, cover-
ing theorems and arc-length estimates are derived. The results presented here would provide

extensions of those given in earlier works.

2 Preliminary Results

In order to prove our main results, we need the following lemmas.
Lemma 2.1 (see [3]) Let h be convex in U with Re(8h(z) + ) > 0. If ¢ is analytic
in U with ¢(0) = h(0), then
2q'(2)

q(z) + W < h(z) = q(2) < h(2). (2.1)

Lemma 2.2 (see [5]) If f € S*(a), 0 <a < 1and |z| =7 <1, then

r r
W <|f(x)] < m (2.2)
Lemma 2.3 (see [7]) Let p € P,,(7) and |z| =r < 1. Then
1 [ 2 1+ [m2(1—7)2—1)r?
— < . 2.
s [ o ap < 0 (23

Lemma 2.4 (see [4]) Let g be univalent in U. Then there exists a point £ with [{| =r
such that for all z, |z| =r,
2r?
1—r?

|z =&l la(2)] < (2.4)

3 Some Properties of the Classes R? (b, k,\) and K? («,b,k,\, )

We begin by stating the following result which involved the connections between R? (b, k, \)
and Ry, (1 — b).
Theorem 3.1 Let f € R} (b,k,\). Then

(1 =N fr(2) + A2fi(2) € R(1—b) (z € U). (3.1)

Proof Let
F(z) = (1 =N f(2) + Azf'(2) (3.2)

and

Fi(z) = (1 = M) fu(2) + A2 fi.(2). (3.3)
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Then condition (1.2) can be written as

1+ <Z£ /((Z)) 1) = p(2) (3.4)

for some p € P,,,. Substituting z by e*2 (p=0,1,2,--- ,k — 1) in (3.4) gives

1 5”2]“(8”2’) + A(guz)2f//(8uz) B }
t ((1 — N fulerz) + Aerzfi(erz) 1) = p(e"2). (3.5)

We note that fi(e¥2) = " fi(2), fi(e"2) = fi(z) and e”f;/(e"z) = f//(#). Thus taking

w=0,1,2,---  k—1in (3.5), respectively, and summing the resulting equations, we get
1 [ 2Fl(2) 1w
14+ - - " .
+ 5 < Fi(z ) ? go p(ez) (3.6)
Since P,, is a convex set, it is clear that
1 ([ 2F](2)
14— b 1) eP,, 3.7
T ( Fi(z) ) (37)
which implies that
z2F](z)
eP,(1-b 3.8

and hence Fy(z) € R,,(1 — D).
Next, we give the integral representations of functions belonging to the class R? (b, k, \).
Theorem 3.2 Let f € R} (b, k,\) with 0 < A < 1. Then

k=1 ek
1 [ b o 1 1
fe(z) = )\zl_k/o exp (k E /0 p() df) u> " tdu (3.9)
n=0
for some p € P,,.

Proof Suppose that f € R; (b, k,\). From (1.2), we get

2f'(2) + A2 f"(2)
(1 =M fi(2) + Az fi(2)

for some p € P,,. Substituting z by e#z (u=0,1,2,--- ,k — 1) in (3.10), we have

=b(p(z)—1)+1 (3.10)

etz f(etz) + Net2)? f" (et2)

(1= N fa(erz) + Aerzf(erz) b(p(e"z) —1) +1. (3.11)

By observing that fi(cz) = " fr(z) and f/(e#z) = f(z), we know that (3.11) can be

written as
2f'(ez) + Aet 22 f' (et2)

ANl 1 aefi) —owE) — D+ L (3.12)
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Taking p = 0,1,2,--- ,k — 1 in (3.12), respectively, and summing the resulting equations,
we obtain .
2f1(2) + A2 1
- )+1 3.13
TS T Z : 19

which follows that

(1= N fi(2) + Azf(2) pguz )1
(lfA)’}k( )Jr)\zf’;(z 2 kZ (3.14)

n=0

Integrating (3.14), we get

— N ful2) + Az f] b [T p(E) -
op (U 2BE A1 o > [P0t _—
or equivalently
k=1 .ehy B
(1 =N fe(2) + Azfi(2) = z - exp (Z Z/ p(€)£1d5> : (3.16)
p=0"0

The assertion of Theorem 3.2 can now be derived from (3.16).
Theorem 3.3 Let f € RS (b, k,\) with 0 < A < 1. Then

ete
2! A/ / exp ( / p(t)t_ldt> ~(b(p&) — 1)+ 1)d§u%_2du (3.17)

for some p € P,,.
Proof Suppose that f € R (b, k,A). From (1.2) and (3.16), we have

(1= NF () + AP )y = TZIE ARG g 0y 1) 4

k—1 etz
= exp (Z Z/O p(t)t_ldt> ~(b(p(z) —1)+1).

(3.18)

Integrating (3.18) yields

z k=1 Ler¢ .
1 =XN)f(2) +Azf'(2) = /0 exp (Z Z/O p(t)tldt) ~(b(p()—1)+1)de. (3.19)

From (3.19), we can get (3.17) easily.

In what follows, we provide some coefficient inequalities and covering theorems for
functions in the class R, (b, k, A).

Theorem 3.4 Let f € RS (b,k,\) with £ > 2. Then

m |b]
2014+ N)°

|az| < (3.20)
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Proof Suppose that f € R} (b,k,\). In view of Theorem 3.1, there exists a function
¢ € Rn(1=0), ¢(2) = (1 = N) fr(2) + Az fi(2) such that

2f'(2) + A2 f"(2) = ¢(2)p(2) (3.21)

for some p € P,,(1 —b). Using the fact that

k— k—1 0o -
% Z = % Z (gVZ + Z an(eyz)"> — 2+ Z a(l—l)k+1z(l_1)k+1;
v=0 o

n=2 =2
(3.22)
we have -
$(z) =2+ > _[L+ A1 = Dkag_prsr2DF (3.23)
=2
Let o
2 =14 cn2" (3.24)
n=1

Then we find from (3.21) that

z+ Z 1+ An—1)]a,z" = (z + Z[l + (- l)k]a(l_l)k+1z(l_1)k+1> <1 + Z cnz"> :
n=1

1=2
(3.25)
Comparing the coefficients 22 in both sides of (3.25), we get 2(1 + A)ay = ¢, which follows

that
|c1]

e YL
Since |¢1| < m|b| for p € P,,(1 —b), we get the desired assertion of Theorem 3.4.
Theorem 3.5 Let f € RS (b,k,\) with k& > 2. Then the unit disk U is mapped by
every univalent function f onto a domain that contains the disk |w| < r;, where
2(14+ )
414+ X) +mlb|

(3.26)

(3.27)

T =

Proof Suppose that f € R? (b, k,A). Also, let wy be any complex number such that
f(2) # wp for z € U, then wy # 0 and

1
‘”()‘f(z):z+<a2+>z2+--- (3.28)
wo — f(2) wo
for every univalent function f. This leads to
1
az+—| <2 (3.29)
Wo
and hence 1

wol > ———. 3.30
|0|—’a2‘+2 ( )
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Using (3.30) and Theorem 3.4, we obtain the required result.
Let L, f(z) denote the length of the image of the circle |z| = r under f(z). we finally
show some basic properties of functions in the class K3, («, b, k, A, §) including arc-length and

coefficient problems.
Theorem 3.6 Suppose that f € K3 (a,b,k,\,0) with 0 <A <1and 0<b<1. Then

m

dab+1

Loz < § C@bEmMMOT(5) ~ 0 (0<as), (3.31)
C(a,b,6,m)N(r)—= (ﬁ) 2 (a > 1),

where N(r) = ‘H‘lln |1f(2)], M(r) = m‘zix |f(2)|, and C(«,b,0,m) is a constant which is deter-

|z
mined by the parameters o, b, and m.

Proof Suppose that f € K3, (a,b, k, \,0). From definition (1.4), we know that

Q) (FD)
5 (ag) —n (532
for some p € P,,(9). It follows that
2f'(2) = (F(2))' 7 (gr(2)" p(2). (3.33)

For 0 < a < 1, we find from (3.33) that

Lf(z) = / 2f(2)]db < / G 1ge(2)[° [p(=)] 6 < M2 () / 196()1* In(2)] 6,

(3.34)
where M(r) = 1\&1&){ |f(2)|. Since g € R5(b, k, \), from Theorem 3.1, we have
(1 = Ngr(2) + Azgi(2) = Gr(2) € Ra(1 —b) = S*(1 —b). (3.35)
Let q(z) = Zqi;ﬁ—((;)) It follows from (3.35) that
Gk (Z)
=1-X+ A(2). 3.36
(2) (2) (3.36)
Differentiate both sides of (3.36) logarithmically, we obtain
2q'(2) 2Gi(2) 1+ (20—1)z
o+ 2"~ 1-: (3:37)
By noting that
1+(2b—-1 1—-A
Re | L1 )z | >0 (0<b<1;0<A<1),
1—=% A
an application of Lemma 2.1 to (3.37) yields
1+(20—-1
glz) < — 222 ( )Z, (3.38)

1—2z
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which implies that gx(z) € S*(1 — b). By Lemma 2.2, we have

W < lgr(2)| < ﬁ (3.39)

Using (3.39) and Lemma 2.3, we deduce from (3.34) that

r

(1—7")20‘17/0 Ip(2)| df

<2 o (o | TP )

L, f(z) < M(r)'=®

Nl

m( e N (3.40)
o 1+ [m2(1 —§)2 — 1]r2\ ?
< oM (r) 0 —"
< 2rM(r) (1 —r)2eb < 1—17r2 )
] 4ag+1
= C(a,b,5,m)M(r) <1 —
Similarly, for « > 1, we have
1 4ag+1
LoJ(2) £ b mN )
—r
Theorem 3.7 Let f € K3 (a,b,k,\,6) with 0 <A <1and 0<b<1. Then
Ci(a, b, §,m)M (n)1—on™5 0<ac<l),
o, < ¢ CHBOmIM T 0= =] (341
Ci(a,b,8,m)N(n)t—*n"= (a>1).

Proof Suppose that f € K2 (a,b,k, )\, 8). For n > 1 and z = re®®, Cauchy’s Theorem
gives that

1 o ! in
- it g, 3.42
na oy /0 zf'(2)e ( )
Using Theorem 3.6 for 0 < o < 1, we get
1 1 4ag+1
e (3.43)
Taking = 1 — + in (3.43), we obtain
lan| < Cy (o, b,6,m)M(n)—n" 7. (3.44)
Using the similar techniques, we can prove the corresponding result for o > 1.
Theorem 3.8 Let f € K3 (a,b,k,\,6) with 0 < A <1and 0<b<1. Then
Cola, b, 6,m)M(r)'=* (1) O<a<l),
|\an+1| - |6Ln|| S (1 )4((x—l)b+1 (345)
Ca(a, b, 8,m)N(r)' = (1= E (> 1).
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Proof It is known that for ¢ € U,z = re? and n > 1, one has

27
|m+1m%ﬂnml</ = — €l]2f'(2)) do. (3.46)
0

Since f € K} (a,b,k, A, J), we obtain

2f'(2) = (F(2))' ™ (g(2))" p(2) (3.47)
and

< g(2) € (3.48)

1+ = =T '
For 0 < a < 1, combining (3.47), (3.48) and (3.46), we get

) ’I“a_l 2
[(n +1)§ans1 — nan| < M(r) a(l—f—r)Q(a—l)b/O 2 =&l gr(2)] Ip(2)| 6. (3.49)
By Lemmas 2.3 and 2.4, we deduce that
a—1 2 2m
o T 2r
0+ Vs =, < M) o [ o) a9

L ,roc—l 2,,,,2 1 2m ) 3
< 2w M(r) (T 1)@ b 1 — 2 (27r /0 Ip(2)] d9>

ro—l 2r2 1+ [m?(1 —6)% — 1]r? H
(14 r)2(@=1b 1 — p2 1—r2 '

<27M(r)t~

Putting [§| = 7 = .1, it follows that

[N

||an+1| - |anH S CQ(a7b7 67 m)M(n)l_an .

Similarly, we can get the required result for o > 1.
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