数学杂志  2016, Vol. 36 Issue (2): 375-384   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
周永国
涉及四个单形的一类不等式
周永国     
湖南沅陵一中, 湖南 怀化 419600
摘要:本文研究了涉及四个单形的一类不等式问题.利用距离几何的理论和方法获得了两个单形的棱长与另两个单形的内点、中线、高、外接超球半径、内切超球半径、旁切超球半径以及n-1维侧面的体积、外接超球半径、内切超球半径的一类新的几何不等式.推广了文献([5])中的全部结果.
关键词单形    棱长    内点    几何不等式    
A CLASS OF INEQUALITY INVOLVING FOUR SIMPLEXES
ZHOU Yong-guo     
No.1 Middle School of Yuanling, Huaihua 419600, China
Abstract: In this paper, we study a class of inequality involving four simplexes. By using the theory and method of distance geometry, we obtain a new class of geometric inequality between the length of the edges of two simplexes and the interior point, center line, height, the circumradius, inradius, sideradius of the other two simplexes and (n-1)-dimensional volume, the circumradius and inradius, which extend the results in[5].
Key words: simplex     the length of edges     interior point     geometric inequality    
1 引言与符号

1981 年, 杨路, 张景中 [1] 两位教授率先将三角形中的 Pedoe 不等式推广到 n 维欧氏空间的单形后, 涉及两个单形的不等式的研究备受关注 [2- 4], 但联系多个单形的几何关系的文献并不多见. 最近, 笔者在文献 [5] 中, 给出了涉及一个单形的棱长与另一个单形的内点, 高,n - 1 维侧面的体积, 外接超球半径的几个不等式. 本文中, 我们用距离几何的理论和方法,结合杨 - 张不等式的推广式 [6], 建立了涉及四个单形的一类不等式. 即两个单形的棱长与另两个单形的内点, 中线, 高, 外接超球半径, 内切超球半径, 旁切超球半径以及 n - 1 维侧面的体积, 外接超球半径, 内切超球半径的一类新的几何不等式. 特别地, 获得了联系三个单形以及两个单形的一些新的几何不等式, 推广了文献 [5] 中的所有结果. 最后, 提出了有待进一步讨论的一个猜想.

全文约定: 用 $\Omega_{k}=A_{k1}A_{k2}\cdots A_{kn+1}$ $(k=1,2,3,4)$ 表示 $n$ 维欧氏空间 $R^{n}$ 中的四个 $n$ 维单形, 其棱长为 $\left\vert A_{ki} A_{kj}\right\vert =\rho_{kij}$ $(k=1,2,3,4;$ $1\leq i<j\leq n+1),$ 其体积, 外接超球半径, 内切超球半径分别为 $ V_{k},R_{k},r_{k}$ $\ (k=1,2,3,4),$ 顶点 $A_{ki}$ 所对的侧面 $f_{ki}=\Omega{ A_{ki}} $ 的旁切超球半径为 $r_{ki}^{\prime},$ 侧面 $ f_{ki}$$n-1$ 维体积为 $S_{ki},$ 侧面 $f_{ki}$ 上的高为 $h_{ki},$ 侧面 $f_{ki}$ 上的中线长为 $l_{ki},$ 侧面 $f_{ki}$ 的外接超球半径为 $R_{ki},$ 内切超球半径为 $r_{ki},$ $\Omega_{k}$ 内任意一点 $P_{k}$ 到该面的距离为 $ d_{ki} (k=1,2,3,4;$ $i=1,2,3,\cdots,n+1).$ 对一个 $n$ 维单形 $\Omega=A_{1} A_{2}\cdots A_{n+1},$ 设其体积, 外接超球半径, 内切超球半径分别为 $V,R,r$, 顶点 $A_{i}$ 所对的侧面 $f_{i}=\Omega{ A_{i}} $ 的旁切超球半径为 $r^{\prime}$, 侧面 $\ f_{i}$$n-1$ 维体积为 $S_{i},$ 侧面 $f_{i}$ 上的高为 $h_{i},$ 侧面 $ f_{i}$ 上的中线长为 $l_{i},$ 侧面 $f_{i}$ 的外接超球半径为 $R_{i}$, 侧面 $f_{i}$ 的内切超球半径为 $r_{i},$ $\Omega$ 内任意一点 $P$ 到该面的距离为 $d_{i} (i=1,2,\cdots ,n+1).$

2 引理

引理 2.1[6]$\Phi=\left\{ A_{i} (m_{i}),i=1,2,\cdots,N\right\} $$\Phi^{\prime}=\left\{ A_{i}^{\prime }(m_{i}^{\prime}),i=1,2,\cdots,N\right\} $ $(N>n)$ 分别表示 $n$ 维欧式空间 $R^{n}$ 中具有相同质点数量的, 并且是完全同向的两个质点组, $m_{i} >0,m_{i}^{\prime}>0$ 是点 $A_{i}$$A_{i}^{\prime}$ 所赋有的质量, 分别取 $\Phi$$\Phi^{\prime}$$k+1$ 个点 $A_{i_{0}},A_{i_{1}} ,\cdots,A_{i_{k}}$$A_{i_{0}}^{\prime},A_{i_{1}}^{\prime},\cdots,A_{i_{k} }^{\prime}$ 所支撑的单形的 $k$ 维有向体积记为 $\ V_{i_{0}i_{1}\cdots i_{k}}$$V_{i_{1}i_{2}\cdots i_{k}}^{\prime}$.

$W_{0} =\sum\limits_{i=1}^{N}\sqrt{m_{i}m_{i}^{\prime}},\\ W_{k} =\underset{i_{0}<i_{1}<\cdots<i_{k}}{\sum\sum\cdots\sum} \sqrt{m_{i_{0}}m_{i_{0}}^{\prime}m_{i_{1}}m_{i_{1}}^{\prime}\cdots m_{i_{k} }m_{i_{k}}^{\prime}}V_{i_{0}i_{1}\cdots i_{k}}V_{i_{0}i_{1}\cdots i_{k} }^{\prime}(1\leq k\leq n),$

则有不等式

$\frac{W_{k}^{l}}{W_{l}^{k}}\geq\frac{\left[ (n-l)!(l!)^{3}\right] ^{k} }{\left[ (n-k)!(k!)^{3}\right] ^{l}}(n!W_{0})^{l-k}(1\leq k<l\leq n),$ (2.1)

当且仅当 $\Phi$$\Phi^{\prime}$ 的广义惯量椭球为球时, (2.1) 式取等号.

引理 2.2[ 7]$n$ 维单形 $\Omega$ 中, 有

$V\leq\sqrt{n+1}(\frac{n!^{2}}{n^{3n}})^{1/2(n-1)}\prod\limits_{i=1}^{n+1} S_{i}^{n/(n^{2}-1)}, $ (2.2)

当且仅当 $\Omega$ 为正则单形时, (2.2) 式取等号.

引理 2.3[8]$n$ 维单形 $\Omega$$,$

$\prod\limits_{i=1}^{n+1}S_{i}\leq\left[ \frac{(n+1)^{n-1}}{(n-1)!^{2}n^{n-2} }\right] ^{(n+1)/2}R^{n^{2}-1},$ (2.3)
$V\leq\frac{1}{n!}\left[ \frac{n^{n}}{(n+1)^{n-1}}\right] ^{1/2} \prod\limits_{i=1}^{n+1}l_{i}^{n/(n+1)},$ (2.4)

当且仅当 $\Omega$ 为正则单形时, 以上两式取等号.

引理 2.4[9]$n$ 维单形 $\Omega$$,$

$\sum\limits_{i=1}^{n+1}\frac{1}{r_{i}^{2}}\leq\frac{n-1}{r^{2}},$ (2.5)

且仅当 $\Omega$ 为正则单形时, (2.5) 式取等号.

引理 2.5 [10]$n$ 维单形 $\Omega$ 中, 对 $0<\theta\leq1,$

$\sum\limits_{i=1}^{n+1}\prod\limits_{j=1,j\neq i}^{n+1}(h_{j}-d_{j})^{\theta }\leq(n+1)\left( \frac{n^{n}(n!)^{2}}{(n+1)^{n+1}}\right) ^{\theta /2}V^{\theta},$ (2.6)
$\sum\limits_{i=1}^{n+1}\prod\limits_{j=1,j\neq i}^{n+1}(h_{j}+d_{j})^{\theta }\leq(n+1)\left( \frac{(n+2)^{2n}(n!)^{2}}{(n+1)^{n+1}n^{n}}\right) ^{\theta/2}V^{\theta},$ (2.7)

当且仅当 $\Omega$ 为正则单形且 $P$ 为其中心时, 以上两式取等号.

3 主要结果及证明

定理 1$n$ 维单形 $\Omega _{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 中, 对 $\alpha,\beta>0,$

$\sum\limits_{1 \le i<j \le n + 1}\frac{\rho_{1ij}\rho_{2ij}}{(d_{3i}d_{3j})^{\alpha }(d_{4i}d_{4j})^{\beta}}\geq(n!)^{2(1-\alpha-\beta)/n}n^{\alpha+\beta +1}(n+1)^{[(n+1)(\alpha+\beta)+n-1]/n}\left( \frac{V_{1}V_{2}}{V_{3} ^{2\alpha}V_{4}^{2\beta}}\right) ^{1/n},$ (3.1)

当且仅当 $\Omega_{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 均为正则单形且 $P_{3}$$P_{4}$ 分别为 $\Omega_{3}$$\Omega_{4}$ 的中心时, (3.1) 式取等号.

在引理 2.1 中, 取 $l=n-1$, $k=1.$ 则有

${\left( {\sum\limits_{1 \le i<j \le n + 1} {} \sqrt {{m_i}{m_j}m_i^\prime m_j^\prime } {\rho _{1ij}}{\rho _{2ij}}} \right)^{n - 1}} \\ \ge n{!^2}{n^{n - 4}}{\left( {\sum\limits_{i = 1}^{n + 1} {\sqrt {{m_i}m_i^\prime } } } \right)^{n - 2}}\left( {\sum\limits_{i = 1}^{n + 1} {\prod\limits_{j = 1,j \ne i}^{n + 1} {\sqrt {{m_j}m_j^\prime } } } {S_{1i}}{S_{2i}}} \right),$ (3.2)

当且仅当 $\Omega_{1},\Omega_{2}$ 均为正则单形且 $m_{1}=m_{2} =\cdots=m_{n+1},m_{1}^{\prime}=m_{2}^{\prime}=\cdots=m_{n+1}^{\prime}$ 时, (3.2) 式取等号.

在不等式 (3.2) 中, 令 $m_{i}=(1/d_{3i})^{2\alpha},m_{i}^{\prime} =(1/d_{4i})^{2\beta}$ $(i=1,2,\cdots,n+1),$ 并运用平均值不等式, 同时注意到 $\sum\limits_{i=1}^{n+1}S_{i}d_{i}=nV,$

$\left( \sum\limits_{1 \le i<j \le n + 1}\frac{\rho_{1ij}\rho_{2ij}}{(d_{3i} d_{3j})^{\alpha}(d_{4i}d_{4j})^{\beta}}\right) ^{n-1} \\ \geq n!^{2}n^{n-4}(n+1)^{n-1}\left( \prod\limits_{i=1}^{n+1}\frac {1}{d_{3i}^{\alpha}d_{4i}^{\beta}}\right) ^{2(n-1)/(n+1)}\prod\limits_{i=1} ^{n+1}\left( S_{1i}S_{2i}\right) ^{1/(n+1)} \\ =n!^{2}n^{n-4}(n+1)^{n-1}\left( \prod\limits_{i=1}^{n+1}\frac {S_{3i}^{\alpha}S_{4i}^{\beta}}{(d_{3i}S_{3i})^{\alpha}(d_{4i}S_{4i})^{\beta} }\right) ^{2(n-1)/(n+1)}\prod\limits_{i=1}^{n+1}(S_{1i}S_{2i})^{1/(n+1)}\\ \geq n!^{2}n^{n-4}(n+1)^{n-1}\left[ \frac{\prod\limits_{i=1}^{n+1} S_{3i}^{\alpha}\prod\limits_{i=1}^{n+1}S_{4i}^{\beta}}{\left( \sum \limits_{i=1}^{n+1}\dfrac{S_{3i}d_{3i}}{n+1}\right) ^{(n+1)\alpha}\left( \sum\limits_{i=1}^{n+1}\dfrac{S_{4i}d_{4i}}{n+1}\right) ^{(n+1)\beta} }\right] ^{\frac{2(n-1)}{n+1}}\prod\limits_{i=1}^{n+1}(S_{1i}S_{2i} )^{1/(n+1)}\\ =n!^{2}n^{n-4-2(n-1)(\alpha+\beta)}(n+1)^{(n-1)[2(\alpha+\beta)+1]}\left( \prod\limits_{i=1}^{n+1}S_{1i}S_{2i}S_{3i}^{2(n-1)\alpha}S_{4i}^{2(n-1)\beta }\right) ^{1/(n+1)}\left( \frac{1}{V_{3}^{\alpha}V_{4}^{\beta}}\right) ^{2(n-1)}. $

再将 (2.2) 式代入并整理, 可得

$\left( \sum\limits_{1 \le i<j \le n + 1}\frac{\rho_{1ij}\rho_{2ij}}{(d_{3i} d_{3j})^{\alpha}(d_{4i}d_{4j})^{\beta}}\right) ^{n-1}\\ \geq(n!)^{2(n-1)(1-\alpha-\beta)/n}n^{(n-1)(\alpha+\beta+1)} (n+1)^{(n-1)[(n+1)(\alpha+\beta)+n-1]/n}\left( \frac{V_{1}V_{2}} {V_{3}^{2\alpha}V_{4}^{2\beta}}\right) ^{(n-1)/n}.$

上式两边同开 $(n-1)$ 次方, 即得不等式 (3.1). 由证明过程可知, (3.1) 式取 等号的条件同定理 1 所述.

在定理 1 中, 取 $P_{3}$$P_{4}$ 分别为单形 $\Omega_{3}$$\Omega_{4}$ 的重心, 此时有 $d_{3i}=h_{3i}/(n+1),$ $d_{4i}=h_{4i}/(n+1)$ $(i=1,2,\cdots,n+1),$ 可得

推论 1$n$ 维单形 $\ \Omega _{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 中, 对 $\alpha,\beta>0,$

$\sum\limits_{1 \le i<j \le n + 1}\frac{\rho_{1ij}\rho_{2ij}}{\left( h_{3i} h_{3j}\right) ^{\alpha}\left( h_{4i}h_{4j}\right) ^{\beta}}\geq (n!)^{2(1-\alpha-\beta)/n}n^{\alpha+\beta+1}(n+1)^{[(1-n)(\alpha +\beta)+n-1]/n}\left( \frac{V_{1}V_{2}}{V_{3}^{2\alpha}V_{4}^{2\beta} }\right) ^{1/n},$ (3.3)

当且仅当 $\Omega_{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 均为正则单形时, (3.3) 式取等号.

若注意到 $h_{3i}=nV_{3}/S_{3i},$ $h_{4i}=nV_{4}/S_{4i}$ $(i=1,2,\cdots,n+1).$ 由 (3.3) 式, 可得

推论 2$n$ 维单形 $\Omega _{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 中, 对 $\alpha,\beta>0,$

$\sum\limits_{1 \le i<j \le n + 1}\rho_{1ij}\rho_{2ij}\left( S_{3i}S_{3j}\right) ^{\alpha}(S_{4i}S_{4j})^{\beta}\nonumber\\ \geq(n!)^{2(1-\alpha-\beta)/n}n^{3(\alpha+\beta)+1}(n+1)^{[(1-n)(\alpha +\beta)+n-1]/n}\left( V_{1}V_{2}\right) ^{1/n}(V_{3}^{\alpha}V_{4}^{\beta })^{2(n-1)/n}.$ (3.4)

(3.4) 式取等号的条件同推论 1.

在定理 1 中, 取 $P$ 为单形 $\Omega$ 的外心 $O$, 则 $\left\vert OA_{i}\right\vert =R.$ 由于 $O$ 在各侧面 $f_{i}$ 上的射影是各侧面的外心 $O_{i}$ $(i=1,2,\cdots,n+1),$

$\left\vert O_{i}A_{1}\right\vert =\cdots=\left\vert O_{i}A_{i-1}\right\vert =\left\vert O_{i}A_{i+1}\right\vert =\cdots=\left\vert O_{i}A_{n+1}\right\vert =R_{i}.$

$d_{i}^{2}=\left\vert O_{i}O\right\vert ^{2}=R^{2}-R_{i}^{2}(i=1,2,\cdots,n+1).$

于是有

推论 3$n$ 维单形 $\Omega _{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 中, 对 $\alpha,\beta>0,$

$\sum\limits_{1 \le i<j \le n + 1}\frac{\rho_{1ij}\rho_{2ij}}{[(R_{3}^{2}-R_{3i} ^{2})(R_{3}^{2}-R_{3j}^{2})]^{\alpha}[(R_{4}^{2}-R_{4i}^{2})(R_{4}^{2} -R_{4j}^{2})]^{\beta}}\nonumber\\ \geq(n!)^{2[1-2(\alpha+\beta)]/n}n^{2(\alpha+\beta)+1}(n+1)^{[2(n+1)(\alpha +\beta)+n-1]/n}\left( \frac{V_{1}V_{2}}{V_{3}^{4\alpha}V_{4}^{4\beta} }\right) ^{1/n}.$ (3.5)

(3.5) 式取等号的条件同推论 1.

定理 2$n$ 维单形 $\Omega _{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 中, 对 $\alpha,\beta>0,$

$\sum\limits_{1 \le i<j \le n + 1} {} \frac{{{\rho _{1ij}}{\rho _{2ij}}}}{{{{({S_{3i}}{S_{3j}})}^\alpha }{{({S_{4i}}{S_{4j}})}^\beta }}}\nonumber \\ \ge {(n!)^{(1 + \alpha + \beta )/n}}{n^{(n - 1)(\alpha + \beta ) + 1}}{(n + 1)^{(n - 1)[1 - n(\alpha + \beta )]/n}}{({V_1}{V_2})^{1/n}}{\left( {\frac{1}{{R_3^\alpha R_4^\beta }}} \right)^{2(n - 1)}},$ (3.6)
$\sum\limits_{1 \le i<j \le n + 1} \rho_{1ij}\rho_{2ij}(l_{3i}l_{3j})^{\alpha} (l_{4i}l_{4j})^{\beta}\nonumber\\ \geq(n!)^{2(1+\alpha+\beta)/n}n^{1-\alpha-\beta}(n+1)^{(n-1)(1+\alpha +\beta)/n}(n-1)^{-(\alpha+\beta)}(V_{1}V_{2}V_{3}^{2\alpha}V_{4}^{2\beta })^{1/n},$ (3.7)
$\sum\limits_{1 \le i<j \le n + 1} \rho_{1ij}\rho_{2ij}(r_{3i}r_{3j})^{\alpha} (r_{4i}r_{4j})^{\beta}\nonumber\\ \geq(n!)^{2/n}n(n+1)^{[n(1+\alpha+\beta)-1]/n}(n-1)^{-(\alpha+\beta)} (V_{1}V_{2})^{1/n}(r_{3}^{\alpha}r_{4}^{\beta})^{2},$ (3.8)
$\sum\limits_{1 \le i<j \le n + 1}\rho_{1ij}\rho_{2ij}(r_{3i}^{\prime}r_{3j}^{\prime })^{\alpha}(r_{4i}^{\prime}r_{4j}^{\prime})^{\beta}\nonumber\\ \geq(n!)^{2/n}n(n+1)^{[n+2n(\alpha+\beta)-1]/2}(n-1)^{-2(\alpha+\beta )}(V_{1}V_{2})^{1/n}(r_{3}^{\alpha}r_{4}^{\beta})^{2},$ (3.9)

当且仅当 $\Omega_{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 均为正则单形时, (3.6)-(3.9) 四式取等号.

对不等式 (3.2) 右边运用平均值不等式, 得

$\left( \sum\limits_{1 \le i<j \le n + 1}\sqrt{m_{i}m_{j}m_{i}^{\prime}m_{j} ^{\prime}}a_{1ij}a_{2ij}\right) ^{n-1}\nonumber\\ \geq(n-1)!^{2}n^{n-2}(n+1)^{n-1}\left( \prod\limits_{i=1}^{n+1}m_{i} m_{i}^{\prime}\right) ^{(n-1)/(n+1)}\prod\limits_{i=1}^{n+1}\left( S_{1i}S_{2i}\right) ^{1/(n+1)}.$ (3.10)

在 (3.10)式中, 令 $m_{i}=(1/S_{3i})^{2\alpha},m_{i}^{\prime}=(1/S_{4i} )^{2\alpha}$$(i=1,2,\cdots,n+1),$ 并注意到不等式 (2.2), (2.3) 两式即 可证得不等式 (3.6).

在不等式 (3.10) 中, 令 ${m_i} = r_{3i}^{2\alpha },$ $m_{i}^{\prime} =l_{4i}^{2\alpha}$ $(i=1,2,\cdots,n+1),$ 并注意到不等式 (2.2), (2.4) 两式 即可证得不等式 (3.7).

在不等式 (2.5)中, 运用平均值不等式, 得

$\prod\limits_{i=1}^{n+1}r_{i}\geq\left( \frac{n+1}{n-1}\right) ^{(n+1)/2}r^{n+1}.$

在不等式 (3.10) 中, 令 $m_{i}=r_{3i}^{2\alpha},m_{i}^{\prime} =r_{4i}^{2\beta}$ $(i=1,2,\cdots,n+1),$ 由上式并注意到不等式 (2.2) 即可 证得不等式 (3.8).

对恒等式[8] $\sum\limits_{i=1}^{n+1}\dfrac{1}{r^{\prime}} =\dfrac{n-1}{r}.$ 运用平均值不等式, 得

$\prod\limits_{i=1}^{n+1}r_{i}^{\prime}\geq\left( \frac{n+1}{n-1}\right) ^{n+1}r^{n+1}.$

在不等式 (3.10)中, 令 $m_{i}=r_{3i}^{\prime2\alpha},m_{i}^{\prime} =r_{4i}^{\prime2\beta}$ $(i=1,2,\cdots,n+1),$ 由上式和不等式 (2.2) 即可证 得不等式 (3.9). 且易知 (3.6)-(3.9) 四式取等号的条件为定理 2 所述. 定理 2 证毕.

定理 3$n$ 维单形 $\Omega _{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 中, 对 $\alpha,\beta>0,$

$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}\rho_{2ij}}{[(h_{3i}-d_{3i} )(h_{3j}-d_{3j})]^{\alpha}[(h_{4i}-d_{4i})(h_{4j}-d_{4j})]^{\beta}}\nonumber\\ \geq(n!)^{2(1-\alpha-\beta)/n}n^{1-\alpha-\beta}(n+1)^{[(n+1)(\alpha +\beta)+n-1]/n}\left( \frac{V_{1}V_{2}}{V_{3}^{2\alpha}V_{4}^{2\beta} }\right) ^{1/n},$ (3.11)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}\rho_{2ij}}{[(h_{3i}+d_{3i} )(h_{3j}+d_{3j})]^{\alpha}[(h_{4i}+d_{4i})(h_{4j}+d_{4j})]^{\beta}}\nonumber\\ \geq(n!)^{2(1-\alpha-\beta)/n}n^{1+\alpha+\beta}(n+1)^{[(n+1)(\alpha +\beta)+n-1]/n}(n+2)^{-2(\alpha+\beta)}\left( \frac{V_{1}V_{2}} {V_{3}^{2\alpha}V_{4}^{2\beta}}\right) ^{1/n}.$ (3.12)

(3.11), (3.12) 两式取等号的条件同定理 1.

我们仅证 (3.11) 式, 而 (3.12) 式类似证之.

在不等式 (2.6) 中, 取 $\theta=1,$ 并对其左边运用算术-几何平均值不等式, 得

$\prod\limits_{i=1}^{n+1}(h_{i}-d_{i})^{n/(n+1)}\leq\left( \frac{n^{n} (n!)^{2}}{(n+1)^{n+1}}\right) ^{1/2}V.$ (3.13)

在不等式 (3.10) 中, 取 $m_{i}=1/(h_{3i}-d_{3i})^{2\alpha},m_{i}^{\prime }=1/(h_{4i}-d_{4i})^{2\beta}$ $(i=1,2,\cdots,n+1),$ 并注意到不等式 (2.2), (3.13) 两式即可证得不等式 (3.11), 且易知 (3.11) 式取等号的条件为定理 3 所述.

在定理 1, 2, 3 和推论 1, 2, 3中, 取 $\Omega_{2}$$\Omega_{1},$ 可得 联系三个单形的一些新的不等式.

推论 4$n$ 维单形 $\Omega_{1},\Omega _{2},\Omega_{3}$ 中, 对 $\alpha,\beta>0,$

$\sum\limits_{1\leq i<j \leq n+1}\frac{\rho_{1ij}^{2}}{(d_{2i}d_{2j})^{\alpha} (d_{3i}d_{3j})^{\beta}}\nonumber\\ \geq(n!)^{2(1-\alpha-\beta)/n}n^{\alpha+\beta +1}(n+1)^{[(n+1)(\alpha+\beta)+n-1]/n}\left( \frac{V_{1}}{V_{2}^{\alpha} V_{3}^{\beta}}\right) ^{2/n},$ (3.14)
$\sum\limits_{1\leq i<j \leq n+1}\frac{\rho_{1ij}^{2}}{(h_{2i}h_{2j})^{\alpha} (h_{3i}h_{3j})^{\beta}}\nonumber\\ \geq (n!)^{2(1-\alpha-\beta)/n}n^{\alpha+\beta +1}(n+1)^{[(1-n)(\alpha+\beta)+n-1]/n}\left( \frac{V_{1}}{V_{2}^{\alpha} V_{3}^{\beta}}\right) ^{2/n},$ (3.15)
$\sum\limits_{1\leq i<j\leq n+1}\rho_{1ij}^{2}(S_{2i}S_{2j})^{\alpha}(S_{3i} S_{3j})^{\beta}\nonumber\\ \geq (n!)^{2(1-\alpha-\beta)/n}n^{3(\alpha+\beta)+1}(n+1)^{[(1-n)(\alpha +\beta)+n-1]/n}V_{1}^{2/n}(V_{2}^{\alpha}V_{3}^{\beta})^{2(n-1)/n},$ (3.16)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}^{2}}{[(R_{2}^{2}-R_{2i}^{2} )(R_{2}^{2}-R_{2j}^{2})]^{\alpha}[(R_{3}^{2}-R_{3i}^{2})(R_{3}^{2}-R_{3j} ^{2})]^{\beta}}\nonumber\\ \geq (n!)^{2[1-2(\alpha+\beta)]/n}n^{2(\alpha+\beta)+1}(n+1)^{[2(n+1)(\alpha +\beta)+n-1]/n}\left( \frac{V_{1}}{V_{2}^{2\alpha}V_{3}^{2\beta}}\right) ^{2/n},$ (3.17)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}^{2}}{(S_{2i}S_{2j})^{\alpha }(S_{3i}S_{3j})^{\beta}}\nonumber\\ \geq (n!)^{(1+\alpha+\beta)/n}n^{(n-1)(\alpha+\beta)+1} (n+1)^{(n-1)[1-n(\alpha+\beta)]/n}V_{1}^{2/n}\left( \frac{1}{R_{2}^{\alpha }R_{3}^{\beta}}\right) ^{2(n-1)},$ (3.18)
$\sum\limits_{1\leq i<j\leq n+1}\rho_{1ij}^{2}(l_{2i}l_{2j})^{\alpha}(l_{3i} l_{3j})^{\beta}\nonumber\\ \geq(n!)^{2(1+\alpha+\beta)/n}n^{1-\alpha-\beta}(n+1)^{(n-1)(1+\alpha +\beta)/n}(n-1)^{-(\alpha+\beta)}(V_{1}V_{2}^{\alpha}V_{3}^{\beta})^{2/n},$ (3.19)
$\sum\limits_{1\leq i<j\leq n+1}\rho_{1ij}^{2}(r_{2i}r_{2j})^{\alpha}(r_{3i} r_{3j})^{\beta}\nonumber\\ \geq(n!)^{2/n}n(n+1)^{[n(1+\alpha+\beta)-1]/n}(n-1)^{-(\alpha +\beta)}V_{1}^{2/n}(r_{2}^{\alpha}r_{3}^{\beta})^{2},$ (3.20)
$\sum\limits_{1\leq i<j\leq n+1}\rho_{1ij}^{2}(r_{2i}^{\prime}r_{2j}^{\prime} )^{\alpha}(r_{3i}^{\prime}r_{3j}^{\prime})^{\beta}\nonumber\\ \geq (n!)^{2/n} n(n+1)^{[n+2n(\alpha+\beta)-1]/2}(n-1)^{-2(\alpha+\beta)}V_{1}^{2/n} (r_{2}^{\alpha}r_{3}^{\beta})^{2},$ (3.21)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}^{2}}{[(h_{2i}-d_{2i} )(h_{2j}-d_{2j})]^{\alpha}[(h_{3i}-d_{3i})(h_{3j}-d_{3j})]^{\beta}}\nonumber\\ \geq (n!)^{2(1-\alpha-\beta)/n}n^{1-\alpha-\beta}(n+1)^{[(n+1)(\alpha +\beta)+n-1]/n}\left( \frac{V_{1}}{V_{2}^{\alpha}V_{3}^{\beta}}\right) ^{2/n},$ (3.22)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}^{2}}{[(h_{2i}+d_{2i} )(h_{2j}+d_{2j})]^{\alpha}[(h_{3i}+d_{3i})(h_{3j}+d_{3j})]^{\beta}}\nonumber\\ \geq (n!)^{2(1-\alpha-\beta)/n}n^{1+\alpha+\beta}(n+1)^{[(n+1)(\alpha +\beta)+n-1]/n}(n+2)^{-2(\alpha+\beta)}\left( \frac{V_{1}}{V_{2}^{\alpha }V_{2}^{\beta}}\right) ^{2/n},$ (3.23)

当且仅当单形 $\Omega_{1},\Omega_{2},\Omega_{3}$ 均为正则单形且 $P_{2}$$ P_{3}$ 分别为 $\Omega_{2}$$\Omega_{3}$ 的中心时, (3.14), (3.22), (3.23) 式取等号, 当且仅当单形 $ \Omega_{1},\Omega_{2},\Omega_{3}$ 均为正 则单形时, (3.15)-(3.21) 式取等号.

在定理 1, 2, 3 和推论 1, 2, 3 中, 取 $ \Omega_{4}$$\Omega_{3},$$\alpha$$\dfrac{\alpha}{2},$ 可得

推论 5$n$ 维单形 $\Omega_{1},\Omega _{2},\Omega_{3}$ 中, 对 $\alpha>0,$

$\sum\limits_{1\leq i<j\leq n+!}\frac{\rho_{1ij}\rho_{2ij}}{(d_{3i}d_{3j})^{\alpha} }\geq(n!)^{2(1-\alpha)/n}n^{\alpha+1}(n+1)^{[(n+1)\alpha+n-1]/n}\left( \frac{V_{1}V_{2}}{V_{3}^{2\alpha}}\right) ^{1/n}$ (3.24)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}\rho_{2ij}}{(h_{3i}h_{3j})^{\alpha} }\geq(n!)^{2(1-\alpha)/n}n^{\alpha+1}(n+1)^{[(1-n)\alpha+n-1]/n}\left( \frac{V_{1}V_{2}}{V_{3}^{2\alpha}}\right) ^{1/n},$ (3.25)
$\sum\limits_{1\leq i<j\leq n+1}\rho_{1ij}\rho_{2ij}(S_{3i}S_{3j})^{\alpha} \nonumber\\ \geq (n!)^{2(1-\alpha)/n}n^{3\alpha+1}(n+1)^{[(1-n)\alpha+n-1]/n}(V_{1} V_{2})^{1/n}(V_{3}^{\alpha})^{2(n-1)/n},$ (3.26)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}\rho_{2ij}}{[(R_{3}^{2}-R_{3i} ^{2})(R_{3}^{2}-R_{3j}^{2})]^{\alpha}}\nonumber\\ \geq (n!)^{2(1-2\alpha)/n}n^{2\alpha +1}(n+1)^{[2(n+1)\alpha+n-1]/n}\left( \frac{V_{1}V_{2}}{V_{3}^{4\alpha} }\right) ^{1/n},$ (3.27)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}\rho_{2ij}}{(S_{3i}S_{3j})^{\alpha} }\nonumber\\ \geq (n!)^{(1+\alpha)/n}n^{(n-1)\alpha+1}(n+1)^{(n-1)(1-n\alpha)/n}(V_{1} V_{2})^{1/n}\left( \frac{1}{R_{3}^{\alpha}}\right) ^{2(n-1)},$ (3.28)
$\sum\limits_{1\leq i<j\leq n+1}\rho_{1ij}\rho_{2ij}(l_{3i}l_{3j})^{\alpha} \nonumber\\ \geq(n!)^{2(1+\alpha)/n}n^{1-\alpha}(n+1)^{(n-1)(1+\alpha)/n}(n-1)^{-\alpha }(V_{1}V_{2}V_{3}^{2\alpha})^{1/n},$ (3.29)
$\sum\limits_{1\leq i<j\leq n+1}\rho_{1ij}\rho_{2ij}(r_{3i}r_{3j})^{\alpha} \nonumber\\ \geq (n!)^{2/n}n(n+1)^{[n(1+\alpha)-1]/n}(n-1)^{-\alpha}(V_{1}V_{2})^{1/n} r_{3}^{2\alpha},$ (3.30)
$\sum\limits_{1\leq i<j\leq n+1}\rho_{1ij}\rho_{2ij}(r_{3i}^{\prime}r_{3j}^{\prime })^{\alpha}\nonumber\\ \geq(n!)^{2/n}n(n+1)^{(n+2n\alpha-1)/2}(n-1)^{-2\alpha}(V_{1} V_{2})^{1/n}r_{3}^{2\alpha},$ (3.31)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}\rho_{2ij}}{[(h_{3i}-d_{3i} )(h_{3j}-d_{3j})]^{\alpha}}\nonumber\\ \geq(n!)^{2(1-\alpha)/n}n^{1-\alpha} (n+1)^{[(n+1)\alpha+n-1]/n}\left( \frac{V_{1}V_{2}}{V_{3}^{2\alpha}}\right) ^{1/n},$ (3.32)
$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}\rho_{2ij}}{[(h_{3i}+d_{3i} )(h_{3j}+d_{3j})]^{\alpha}}\nonumber\\ \geq (n!)^{2(1-\alpha)/n}n^{1+\alpha} (n+1)^{[(n+1)\alpha+n-1]/n}(n+2)^{-2\alpha}\left( \frac{V_{1}V_{2}} {V_{3}^{2\alpha}}\right) ^{1/n},$ (3.33)

当且仅当单形 $\Omega_{1},\Omega_{2},\Omega_{3}$ 均为正则单形且 $P_{3}$$\ \Omega_{3}$ 的中心时, (3.24), (3.32), (3.33) 式取等号, 当且仅当单形 $\Omega_{1},\Omega_{2},\Omega_{3}$ 均为正则单形时, (3.25)-(3.31) 式取等号.

在定理 1, 2, 3和推论 1, 2, 3中, 取 $\Omega_{2}$$\Omega_{1},$ $\Omega_{4}$$\Omega_{3}$ $(\alpha=\beta$$\dfrac{\alpha}{2}),$ 可 得联系两个单形的一些新的不等式.

4 注记与猜想

注 1 值得指出的是, 由定理的证明不难看出, 只要将 $(S_{i} S_{j})^{\alpha},$ $(l_{i}l_{j})^{\alpha},$ $(r_{i}r_{j})^{\alpha},$ $(r_{i}^{\prime}r_{j}^{\prime})^{\alpha},$ $(d_{i}d_{j})^{-\alpha},$ $(h_{i}h_{j})^{-\alpha},$ $(S_{i}S_{j})^{-\alpha}$, $[(R^{2}-R_{i}^{2} )(R^{2}-R_{j}^{2})]^{-\alpha},$ $[(h_{i}-d_{i})(h_{j}-d_{j})]^{-\alpha},$ $[(h_{i}+d_{i})(h_{j}+d_{j})]^{-\alpha}$ 这十式两两组合, 还有一大批类似定理 1, 2, 3和推论 1~6的联系四个单形或三个单形以及两个单形的一些 新的不等式, 如

$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}\rho_{2ij}(r_{3i}r_{3j})^{\alpha} }{(d_{4i}d_{4j})^{\beta}}\nonumber\\ \geq(n!)^{\frac{2(1-\beta)}{n}}n^{1+\beta}(n+1)^{\frac{n(\alpha +\beta+1)+\beta-1}{n}}(n-1)^{-\alpha}\left( \frac{V_{1}V_{2}}{V_{4}^{2\beta} }\right) ^{1/n}r_{3}^{2\alpha},$ (4.1)
$\sum\limits_{1\leq i<j\leq n+1}\rho_{1ij}\rho_{2ij}(l_{3i}l_{3j})^{\alpha} (r_{4i}^{\prime}r_{4j}^{\prime})^{\beta}\nonumber\\ \geq(n!)^{\frac{2(\alpha-1)}{n}}n^{1-\alpha}(n+1)^{\frac{(n-1)(1-\alpha )+2n\beta}{n}}(n-1)^{-2\beta}(V_{1}V_{2}V_{3}^{2\alpha})^{1/n}r_{4}^{2\beta},$ (4.2)

当且仅当单形 $\Omega_{1},\Omega_{2},\Omega_{3},\Omega_{4}$ 均为正则单形且 $\ \ P_{4}$$\Omega_{4}$ 的中心时, (4.1) 式取等号, (4.2) 式取等号的条件 同推论 1.

注 2 (3.34)-(3.37) 以及 (3.42), (3.43) 各式是文 [5] 结果的指数推广.

最后, 我们提出如下猜想.

猜想$n$ 维单形 $\Omega_{1},\Omega_{2},\Omega _{3},\Omega_{4}$ 中, 对 $\alpha,\beta>0,$ 证明或否定

$\sum\limits_{1\leq i<j\leq n+1}\frac{\rho_{1ij}\rho_{2ij}}{(l_{3i}l_{3j})^{\alpha }(l_{4i}l_{4j})^{\beta}}\nonumber\\ \geq (n!)^{2(1-\alpha-\beta)/n}n^{\alpha+\beta +1}(n+1)^{[(1-n)(\alpha+\beta)+n-1]/n}\left( \frac{V_{1}V_{2}}{V_{3} ^{2\alpha}V_{4}^{2\beta}}\right) ^{1/n}.$ (4.3)

(4.3) 式取等号的条件同推论 1.

致谢

衷心感谢冷岗松教授的悉心指导和马梁英博士的帮助!

参考文献
[1] 杨路, 张景中. Neulerg-Pedoe 不等式的高维推广[J]. 数学学报, 1981, 24(3): 401–408.
[2] 冷岗松, 唐立华. 再论 Pedoe 不等式的高维推广及应用[J]. 数学学报, 1997, 30(1): 14–21.
[3] 苏化明. 一类涉及两个单形的不等式及应用[J]. 数学研究与评论, 1995, 15(3): 429–435.
[4] 陈计, 马援. 涉及两个单形的一类不等式[J]. 数学研究与评论, 1989, 9(2): 282–284.
[5] 周永国. 涉及两个单形及其内点的几个不等式 (英)[J]. 数学季刊, 2011, 26(4): 628–632.
[6] 杨定华. 杨 - 张不等式的推广及其应用[J]. 数学研究与评论, 2007, 27(4): 22–24.
[7] 杨路, 张景中. 关于质点组的一类几何不等式[J]. 中国科技大学学报, 1981, 11(2): 1–8.
[8] 沈文选著. 单形论导引[M]. 湖南: 湖南师范大学出版社, 2000.
[9] Leng Gangsong, Tang Lihua. Some inequalities an the inradii of its faces[J]. Geom. Dedicata, 1996, 61(1): 43–49.
[10] 马统一. 关联单形和一点的一类几何不等式[J]. 数学研究与评论, 2003, 23(2): 373–380.