数学杂志  2016, Vol. 36 Issue (2): 303-309   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
张辉
磁场微极流方程组弱解的正则性准则
张辉     
安庆师范学院数学与计算科学学院, 安徽 安庆 246011
摘要:本文研究了三维空间中磁场微极流方程组弱解的正则性准则问题.利用能量估计的方法证明了如果速度场以及磁场满足一定的条件, 则弱解在(0, T]是唯一的强解.
关键词磁场微极流方程组    弱解    正则性准则    
REGULARITY CRITERION FOR WEAK SOLUTIONS TO THE 3D MAGNETO-MICROPOLAR FLUID EQUATIONS
ZHANG Hui     
School of Mathematical and Computation Science, Anqing Normal University, Anqing 246011, China
Abstract: In this paper, we study the regularity criterion to magneto-micropolar equations in $\mathbb{R}^{3}$. By energy estimate, we obtain a regularity criterion in terms of direction of the velocity. It is proved that if the velocity field and magnetic field satisfy some conditions, then the weak solution is actually the unique strong solution on (0, T].
Key words: magneto-micropolar fluid equations     weak solutions     regularity criterion    
1 引言

$\mathbb{R}^{3}$中考虑磁场微极流方程组弱解的正则性准则, 方程组描述如下:

$ \left\{ \begin{array}{l} \quad{\partial_t}u + (u \cdot \nabla )u - \Delta u - (b \cdot \nabla )b + \nabla (p + |b{|^2}) - \frac{1}{2}\nabla \times w = 0, \\ \quad{\partial _t}w - \Delta w - \nabla \nabla \cdot w + w + u \cdot \nabla w - \frac{1}{2}\nabla \times u = 0, \\ \quad{\partial _t}b - \Delta b + (u \cdot \nabla )b - (b \cdot \nabla )u = 0, \\ \quad\nabla \cdot u = \nabla \cdot b = 0, \\ \quad u(x, 0) = {u_0}(x), b(x, 0) = {b_0}(x), w(x, 0) = {w_0}(x). \end{array} \right. $ (1.1)

在无穷远处假设

$ \mathop {\lim }\limits_{|x| \to \infty } |u(x, t)| = \mathop {\lim }\limits_{|x| \to \infty } |w(x, t)| = \mathop {\lim }\limits_{|x| \to \infty } |b(x, t)| = 0, $ (1.2)

这里$u(t, x)\in\mathbb{R}^{3}$表示未知的速度场, $b(t, x)\in\mathbb{R}^{3}; w(t, x)\in\mathbb{R}^{3}$分别表示未知的磁场与微旋转速度场; $p(t, x)\in \mathbb{R}$表示未知的压力. $(u_{0}, w_{0}, b_{0})$是给定的初始值, 且在分布意义下满足$\nabla\cdot u_{0}=\nabla\cdot b_{0}=0$.

磁场微极方程组已经被广泛研究. Rojas-Medar[1]利用谱Galkerin方法建立了强解的局部存在性与唯一性. Ortega-Torres和Rojas-Medar[2]证明了当初值足够小时, 方程组(1.1) 强解的整体存在性. Rojas-Medar和Boldrini[3]利用Galkerin方法证明了方程组弱解的整体存在性, 并且证明了在二维情形下弱解的唯一性.然而在三维情形, 弱解的唯一性和强解能否会在有限时间内发生爆破仍然是一个极具挑战性的问题; 最近有一些文献[4-8]研究了磁场微极流方程组弱解的正则性准则和强解的爆破性准则.

在三维Navier-Stokes方程的正则性研究中, 一个突出的成果便是由Constantin和Fefferman[9]提出的关于旋度场方向的正则性准则.在文献[9]中, 作者证明了如果

$ |{\rm{sin}}\theta (x,x + y,t)| \le Cy, $ (1.3)

则弱解是存在区间(0, T]上唯一的强解.此处$\theta(x, x+y, t)$表示在$t$时刻旋度在$x$与$x+y$两点的夹角.文献[9]的结果后来被许多数学家进行了改进与发展.在文献[10, 11]中, 周勇以及Beir$\tilde{a}$o da Veiga和L. C. Berselli分别独立地得到如下正则性准则

$ |{\rm{sin}}\theta(x, x+y, t)|\leq Cy^{\frac{1}{2}}. $ (1.4)

在文献[12]中周勇还得到一个旋度场及其方向之间的一个组合形式的正则性准则.

条件(1.4) 在文献[13, 14]中被进一步推到了MHD方程以及广义MHD方程中.同时有部分结论延拓到了有界区域[15, 16].

类似于文献[9]的思想, 2008年, Vasseur[17]基于如下的等式

$ |u|{\rm{div}}(\frac{u}{{|u|}}) = - \frac{u}{{|u|}} \cdot \nabla |u|, $

给出了一个关于速度场方向的正则性准则:

$ \label{} {\rm{div}}(\frac{u}{|u|})\in L^{p}(0, T; L^{q}(\mathbb{R}^{3}));\hspace{0.2cm}\frac{2}{p}+\frac{3}{q}\leq\frac{1}{2}, \hspace{0.15cm}q\geq 6, \hspace{0.15cm} p\geq 4. $ (1.5)

最近, 文献[18, 19]将条件(1.5) 推广到了广义NS方程组以及MHD方程组, 获得了如下的正则性准则:

$ \label{} {\rm{div}}(\frac{u}{|u|})\in L^{p}(0, T; L^{q}(\mathbb{R}^{3}));\hspace{0.2cm}\frac{2\alpha}{p}+\frac{3}{q}\leq2\alpha-\frac{3}{2}, \hspace{0.3cm}\frac{6}{4\alpha-3} < q\leq\infty, $ (1.6)
$ \label{} {\rm{div}}(\frac{u}{|u|})\in L^{p}(0, T; L^{q}(\mathbb{R}^{3}));\hspace{0.2cm}\frac{2}{p}+\frac{3}{q}\leq\frac{1}{2}, \hspace{0.15cm}q\geq 6, \hspace{0.15cm} q\geq 4, $ (1.7)

以及

$ \label{} b\in L^{\beta}(0, T; L^{\alpha}(\mathbb{R}^{3}));\hspace{0.2cm}\frac{2}{\beta}+\frac{3}{\alpha}\leq1, \hspace{0.15cm}\alpha >3. $ (1.8)

受到上述文献的启发, 本文对磁场微极流方程组也考虑了速度场方向的正则性准则.利用类似于文献[17]的讨论方法, 获得了如下的结论:

定理1   假设初值$(u_{0}, w_{0}, b_{0})\in H^{1}(\mathbb{R}^{3})$, 且在分布意义下有$div u_{0}=div b_{0}=0$; 三元函数$(u, w, b)$是方程组(1.1)-(1.2) 的弱解, 如果满足

$ \label{} {\rm{div}}(\frac{u}{|u|})\in L^{p}(0, T; L^{q}(\mathbb{R}^{3}));\hspace{0.2cm}\frac{2}{p}+\frac{3}{q}\leq\frac{1}{2}, \hspace{0.15cm}q\geq 6, \hspace{0.15cm} q\geq 4 $ (1.9)

以及

$ \label{} b\in L^{\beta}(0, T; L^{\alpha}(\mathbb{R}^{3}));\hspace{0.2cm}\frac{2}{\beta}+\frac{3}{\alpha}\leq1, \hspace{0.15cm}\alpha >3, $ (1.10)

$(u, w, b)$在存在区间(0, T]上是唯一的强解.

注1   当$(\chi=0, w=b=0)$时, 磁场微极流方程退化成了Navier-Stokes方程组; $(\chi=0, w=0)$时方程退化成果MHD方程组; 因此定理1的结论是文献[17, 19]结果的推广.

注2   由于正则性准则与微旋度场无关, 所以对应微极流方程组

$ \left\{ \begin{array}{l} \quad{\partial _t}u + (u \cdot \nabla )u -\Delta u + \nabla p -\frac{1}{2}\nabla \times w = 0, \\ \quad{\partial _t}w -\Delta w - \nabla divw + w + u \cdot \nabla w - \frac{1}{2}\nabla \times u = 0, \\ \quad\nabla \cdot u = 0, \\ \quad u(x, 0) = {u_0}(x), w(x, 0) = {w_0}(x), \end{array} \right. $ (1.11)

在无穷远处假设

$ \mathop {\lim }\limits_{|x| \to \infty } |u(x, t)| = \mathop {\lim }\limits_{|x| \to \infty } |w(x, t)| = 0. $ (1.12)

定理1蕴含着如下的正则性准则.

定理2 假设$(u_{0}, w_{0})\in H^{1}(\mathbb{R}^{3})$, 二元函数$(u, w)$是方程(1.11-1.12) 的弱解, 且满足:

$ {\rm{div}}(\frac{u}{|u|})\in L^{p}(0, T; L^{q}(\mathbb{R}^{3}));\hspace{0.3cm}\frac{2}{p}+\frac{3}{q}\leq \frac{1}{2}, \hspace{0.1cm}p\geq 4, q\geq 6, $

$(u, w)$实际是存在区间(0, T]上的强解.

在定理的证明过程中, 需要用到如下的引理[20]

引理1  假设$f\in L^{\infty}(0, T; L^{s}(\mathbb{R}^{3}))\cap L^{s}(0, T; L^{3s}(\mathbb{R}^{3})), s>1$, 则$f\in L^{a}(0, T; L^{b}(\mathbb{R}^{3}))$, 其中$a\geq s, s\leq b\leq 3s$并且$\frac{2}{a}+\frac{3}{b}\geq \frac{3}{2}$.

一个直接的应用便是如果$(u, w, b)$是方程的弱解, 则

$ (u, w, b)\in L^{a}(0, T; L^{b}(\mathbb{R}^{3})), \hspace{1cm}\frac{2}{a}+\frac{3}{b}\geq \frac{3}{2}, \hspace{0.3cm}2\leq b\leq6. $

  为了简便, 在本文中函数的$L^{p}-$范数用$\|\cdot\|_{p}$表示; $H^{s}-$范数用$\|\cdot\|_{H^{s}}$表示, $C$表示常数, 它可能涉及到某些已经假定的量, 如初值等.

2 定理的证明

$|u|^{2}u$乘上方程(1.1) 的第一个方程组, 并在$\mathbb{R}^{3}$上积分, 通过分部积分则有

$ \quad\frac{1}{4}\frac{d}{dt}\|u\|_{4}^{4}+\frac{1}{2}\|\nabla|u|^{2}\|_{2}^{2}+\int_{\mathbb{R}^{3}}|u|^{2}|\nabla u|^{2}dx\nonumber\hspace{4.5cm}\\ =\frac{1}{2}\int_{\mathbb{R}^{3}}(\nabla\times w)|u|^{2}u dx+\int_{\mathbb{R}^{3}} pu\nabla|u|^{2}dx+\int_{\mathbb{R}^{3}}b\cdot\nabla b\cdot|u|^{2}udx\nonumber\\ =I_{1}+I_{2}+I_{3}.\hspace{8.5cm} $ (2.1)

此处用到如下的计算:

$ -\int_{\mathbb{R}^{3}}\Delta u\cdot u|u|^{2}dx = -\sum\limits_{i=1}^{3}\int_{\mathbb{R}^{3}}\nabla\cdot(\nabla u_{i}u_{i}|u|^{2})dx+\sum\limits_{i=1}^{3}\int_{\mathbb{R}^{3}}\nabla u_{i}\cdot\nabla(u_{i}|u|^{2})dx\nonumber\\ \quad\quad\quad\quad\quad\quad\quad\quad =\sum\limits_{i=1}^{3}\int_{\mathbb{R}^{3}}\nabla u_{i}\cdot\nabla u_{i}|u|^{2}dx+\sum\limits_{i=1}^{3}\int_{\mathbb{R}^{3}}\nabla u_{i}u_{i}\nabla|u|^{2}dx\nonumber\\ \quad\quad\quad\quad\quad\quad \quad\quad=\frac{1}{2}\|\nabla|u|^{2}\|_{2}^{2}+\int_{\mathbb{R}^{3}}|u|^{2}|\nabla u|^{2}dx. $ (2.2)
$ \int_{\mathbb{R}^{3}}(u\cdot\nabla)u\cdot u|u|^{2}dx =\frac{1}{4}\sum\limits_{i=1}^{3}\int_{\mathbb{R}^{3}}u_{i}\partial_{i}|u|^{4}dx\nonumber \\ \quad\quad\quad\quad\quad\quad\quad\quad\quad=\frac{1}{4}\sum\limits_{i=1}^{3}\int_{\mathbb{R}^{3}}\partial_{i}(u_{i}|u|^{4})-\frac{1}{4}\sum\limits_{i=1}^{3}\int_{\mathbb{R}^{3}}\partial{i}u_{i}|u|^{4}dx\nonumber\\ \quad\quad\quad\quad\quad\quad\quad\quad\quad=0. $ (2.3)

$|w|^{2}w$乘上第二个方程, 并在$\mathbb{R}^{3}$上积分, 通过分部积分则有

$ \quad\frac{1}{4}\frac{d}{dt}\|w\|_{4}^{4}+\frac{1}{2}\|\nabla|w|^{2}\|_{2}^{2}+\int_{\mathbb{R}^{3}}|w|^{2}|\nabla w|^{2}dx+\||w|divw\|_{2}^{2}+\|w\|_{4}^{4}\nonumber\\ \leq \frac{1}{2}\int_{\mathbb{R}^{3}}\nabla\times u\cdot(|w|^{2}w) dx+\int_{\mathbb{R}^{3}} {\rm{div}} w w \nabla|w|^{2}dx=I_{4}+I_{5}. $ (2.4)

$|b|^{2}b$乘上第三个方程, 并在$\mathbb{R}^{3}$上积分, 有

$ \frac{1}{4}\frac{d}{dt}\|b\|_{4}^{4}+\frac{1}{2}\|\nabla|b|^{2}\|_{2}^{2}+\int_{\mathbb{R}^{3}}|b|^{2}|\nabla b|^{2}dx =\int_{\mathbb{R}^{3}}b\cdot\nabla u\cdot|b|^{2}bdx=I_{6}. $ (2.5)

由于$\nabla\cdot u=\nabla\cdot b=0$, 类似于(2.3) 有

$ \int_{\mathbb{R}^{3}}(u\cdot\nabla)w\cdot w|w|^{2}dx=0;\hspace{1cm}\int_{\mathbb{R}^{3}}(b\cdot\nabla)b\cdot b|b|^{2}dx=0;\hspace{1cm}\int_{\mathbb{R}^{3}}(u\cdot\nabla)b\cdot b|b|^{2}dx=0. $

下面逐项估计$I_{i}, (i=1, \ldots 6)$, 利用如下的向量计算

$ \nabla\cdot(A\times B)=B\cdot\nabla\times A-A\cdot\nabla\times B. $

通过计算

$ I_{1}=\int_{\mathbb{R}^{3}} w\nabla\times(|u|^{2}u) dx \nonumber \\ \quad\leq \int_{\mathbb{R}^{3}}|w||u|^{2}(|\nabla u|+2|\nabla|u||)dx \nonumber\\ \quad\leq3\int_{\mathbb{R}^{3}}|w||u|^{2}|\nabla u|dx, $ (2.6)

此处用到了事实$|\nabla|u||\leq|\nabla u|$.利用Holder不等式和Young不等式有

$ |I_{1}|\leq C(\|w\|_{4}^{4}+\|u\|_{4}^{4})+\frac{3}{4}\||u||\nabla u|\|_{2}^{2}. $ (2.7)

类似地, 对于$I_{4}$

$ | I_{4}|\leq C(\|w\|_{4}^{4}+\|u\|_{4}^{4})+\frac{3}{4}\||w||\nabla w|\|_{2}^{2}. $ (2.8)

对于$I_{5}$

$ |I_{5}|\leq \int_{\mathbb{R}^{3}} |{\rm{div}} w||w|| \nabla|w|^{2}|dx \nonumber \\ \quad\leq \|{\rm{div}} w|w|\|_{2}^{2} +\frac{1}{4}\| \nabla|w|^{2}\|_{2}^{2}. $ (2.9)

为了估计$I_{2}$, 我们首先要建立一些压力项与速度场的估计.因为

$ -\Delta p=\sum\limits_{i, j=1}^{3}\partial_{i}\partial_{j}(u_{i}u_{j}-b_{i}b_{j}), $

所以由Calderon-Zygmund不等式可知, 存在一个常数$C$使得

$ \|p\|_{q}\leq C(\|u\|_{2q}^{2}+\|b\|_{2q}^{2}), \hspace{1cm}1 < q < \infty, \\ |I_{2}| \leq2\int_{\mathbb{R}^{3}}|p||u|^{2}|\frac{u}{|u|}\cdot\nabla|u||dx \nonumber \\ \quad\quad\leq2\|p\|_{\alpha}\||u|^{2}\|_{\alpha}\||u|{\rm{div}}(\frac{u}{|u|})\|_{\tilde{q}} \nonumber\\ \quad\quad\leq C(\||u|^{2}\|_{\alpha}+\||b|^{2}\|_{\alpha})\||u|^{2}\|_{\alpha}\||u|{\rm{div}}(\frac{u}{|u|})\|_{\tilde{q}}\nonumber\\ \quad\quad\leq C(\||u|^{2}\|_{\alpha}^{2}+\||b|^{2}\|_{\alpha}^{2})\||u|{\rm{div}}(\frac{u}{|u|})\|_{\tilde{q}}\nonumber\\ \quad\quad \leq C(\|u\|_{4}^{4}+\|b\|_{4}^{4})\||u|{\rm{div}}(\frac{u}{|u|})\|_{\tilde{q}}^{\frac{1}{\theta}}+\frac{1}{8}(\|\nabla|u|^{2}\|_{2}^{2}+\|\nabla|b|^{2}\|_{2}^{2}). $ (2.10)

此处用到了如下的事实

$ |u|{\rm{div}}(\frac{u}{|u|})=-\frac{u}{|u|}\cdot\nabla|u| $

利用插值不等式和嵌入定理有

$ |I_{2}|\leq C\||u|{\rm{div}}(\frac{u}{|u|})\|_{\tilde{q}}^{\frac{1}{\theta}}(\|u\|_{4}^{4}+\|b\|_{4}^{4})+\frac{1}{8}(\|\nabla|u|^{2}\|_{2}^{2}+\|\nabla|b|^{2}\|_{2}^{2}). $ (2.11)

最后估计$I_{3}+I_{6}$

$ |I_{3}+I_{6}|= |\int_{\mathbb{R}^{3}}b\cdot\nabla b\cdot|u|^{2}udx+\int_{\mathbb{R}^{3}}b\cdot\nabla u\cdot|b|^{2}bdx|\nonumber\hspace{2cm}\\ \quad\quad\quad\quad=|\int_{\mathbb{R}^{3}}b\cdot\nabla (|u|^{2}u)\cdot bdx +\int_{\mathbb{R}^{3}}b\cdot\nabla (|b|^{2}b)\cdot udx|\nonumber\\ \quad\quad\quad\quad\leq \int_{\mathbb{R}^{3}}|b|^{2}|u|(|\nabla|u|^{2}|+|\nabla|b|^{2}|)dx\nonumber\hspace{3cm}\\ \quad\quad\quad\quad\leq C\int_{\mathbb{R}^{3}}|b|^{4}|u|^{2}dx+\frac{1}{8}(\|\nabla|u|^{2}\|_{2}^{2}+\|\nabla|b|^{2}\|_{2}^{2}). $ (2.12)

利用Holder不等式与Young不等式, 可得

$ \int_{\mathbb{R}^{3}}|b|^{4}|u|^{2}dx \leq \|b\|_{\alpha}^{2}\|b\|_{2k}^{2}\|u\|_{2k}^{2}\nonumber \\ \quad\quad\quad\quad\quad\quad \leq \|b\|_{\alpha}^{2}\||b|^{2}\|_{k}\||u|^{2}\|_{k}\nonumber\\ \quad\quad\quad\quad\quad\quad\leq \|b\|_{\alpha}^{2}(\||b|^{2}\|_{2}^{2h}\|\nabla|b|^{2}\|_{2}^{2(1-h)}+\||u|^{2}\|_{2}^{2h}\|\nabla|u|^{2}\|_{2}^{2(1-h)})\nonumber\\ \quad\quad\quad\quad\quad\quad\leq \|b\|_{\alpha}^{\frac{2}{h}}(\|u\|_{4}^{4}+\|b\|_{4}^{4})+\frac{1}{8}(\|\nabla|u|^{2}\|_{2}^{2}+\|\nabla|b|^{2}\|_{2}^{2}). $ (2.13)

上面的指标满足如下的关系

$ \frac{1}{\alpha}+\frac{1}{k}=\frac{1}{2}, \hspace{0.2cm}\frac{1}{k}=\frac{1+2h}{6}. $

若假设$b\in L^{\beta}(0, T; L^{\alpha}(\mathbb{R}^{3}))$, 要使得计算过程有意义, 则需要$\beta\leq \frac{2}{h}$, 从上的关系有

$ \frac{2}{\beta}+\frac{3}{\alpha}\leq 1, \hspace{0.4cm} 3 < \alpha\leq\infty. $ (2.14)

综合上面的估计有

$ \frac{d}{dt}(\|w\|_{4}^{4}+\|u\|_{4}^{4}+\|b\|_{4}^{4})\leq C\||u|{\rm{div}}(\frac{u}{|u|})\|_{\tilde{q}}^{\frac{1}{\theta}}(\|w\|_{4}^{4}+\|u\|_{4}^{4}+\|b\|_{4}^{4}). $ (2.15)

假设${\rm{div}}(\frac{u}{|u|})\in L^{p}(0, T;L^{q}(\mathbb{R}^{3}))$并且假设$|u|{\rm{div}}(\frac{u}{|u|})\in L^{\tilde{p}}(0, T;L^{\tilde{q}}(\mathbb{R}^{3}))$, 如果$\tilde{p}\geq\frac{1}{\theta}$, 则可以得到

$ \mathop {\sup }\limits_{t \in [0,T)} (\parallel w\parallel _4^4 + \parallel u\parallel _4^4 + \parallel b\parallel _4^4){\rm{ \& \# }}60;\infty . $

由如下的指标关系

$ \frac{2}{\alpha}+\frac{1}{\tilde{q}}=1, \hspace{0.6cm}\frac{1}{\alpha}=\frac{1+2\theta}{6}, $ (2.16)

可知如果$\tilde{p}\geq\frac{1}{\theta}$, 则有

$ \frac{3}{\tilde{q}}+\frac{2}{\tilde{p}}\leq 2. $ (2.17)

又因为

$ \frac{1}{\tilde{p}}=\frac{1}{a}+\frac{1}{p}, \hspace{0.4cm}\frac{1}{\tilde{q}}=\frac{1}{b}+\frac{1}{q}. $ (2.18)

利用如下的事实

$ u\in L^{a}(0, T;L^{b}(R^{3})), \hspace{0.1cm}\quad \frac{2}{a}+\frac{3}{b}\geq\frac{3}{2}, \hspace{0.2cm}2\leq b\leq 6, $ (2.19)

则有

$ \frac{2}{p}+\frac{3}{q}\leq \frac{1}{2}, \hspace{0.2cm}q\geq6, \, \, p\geq4. $
参考文献
[1] Rojas-Medar M. Magneto-micropolar fluid motion: existence and uniqueness of strong solutions[J]. Math. Nachrichten, 1997, 188: 301–319. DOI:10.1002/(ISSN)1522-2616
[2] Ortega-Torres E E, Rojas-Medar M A. Magneto-micropolar fluid motion: global existence of strong solutions[J]. Abstr. Appl. Anal., 1999, 4: 109–125. DOI:10.1155/S1085337599000287
[3] Rojas-Medar M A, Boldrini J L. Magneto-micropolar fluid motion: existence of weak solutions[J]. Rev. Mat. Complut., 1998, 11: 443–460.
[4] Yuan B Q. Regularity of weak solutions to magneto-micropolar fluid equations[J]. Acta Math. Sci., 2010, 30B(5): 1469–1480.
[5] Ortega-Torres E, Rojas-Medar. On the uniqueness and regularity of the weak solution for magnetomicropolar fluid equations[J]. Revista de Matemáticas Aplicadas, 1996, 17: 75–90.
[6] Zhang H, Zhao Y Y. Blow-up criterion for strong solution to the 3D magneto-micropolar fluid equations in the multiplier space[J]. Electr. J. Difi. Equ., 2012, 188: 1–7.
[7] Zhang Z J, Yao Z A, Wang X F. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces[J]. Nonl. Anal., 2011, 74: 2220–2225. DOI:10.1016/j.na.2010.11.026
[8] Wang Y Z, Li Y F, Wang Y X. Blow-up criterion of smooth solutions for magneto-micropolar fluid equations with partial viscosity[J]. Boundary Value Prob., 2011, 11: 1–11.
[9] Constantin P, Fefierman C. Direction of vorticity and the probolem of global regularity for the Navier-Stokes equations[J]. Indiana Univ. Math, 1993, 42: 775–789. DOI:10.1512/iumj.1993.42.42034
[10] Beirao da Veiga H., Berselli L C. On the regularzing efiect of the vorticity direction in incompressible viscous flows[J]. Difier. Integ. Equ., 2002, 15: 345–356.
[11] Zhou Y. Direction of vorticity and a new regularity criterion for the Navier-Stokes euations[J]. ANZIAM J., 2005, 46: 309–316. DOI:10.1017/S1446181100008270
[12] Zhou Y. A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity[J]. Monatsh. Math., 2005, 144: 251–257. DOI:10.1007/s00605-004-0266-z
[13] Zhou Y. Regularity criteria for the generalized viscous MHD equations[J]. Ann. Inst. H. Poincaré e Anal. Non Liné eire, 2007, 24: 491–505. DOI:10.1016/j.anihpc.2006.03.014
[14] He C, Xin Z P. On the regularity of solutions to the magnetohydrodynamic equations[J]. J. Difi. Equ., 2005, 213: 235–254. DOI:10.1016/j.jde.2004.07.002
[15] Beirao da Veiga. Vorticity and regularity for flows under the Navier boundary condition[J]. Commun. Pure Appl. Anal., 2006, 5: 907–918. DOI:10.3934/cpaa
[16] Berselli L.C. Some geometric constraints and the problem of global regularity for the Navier-Stokes equtions[J]. Nonl., 2009, 22: 2561–2581.
[17] Vasseur A. Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity[J]. Appl. Math., 2009, 54: 47–52. DOI:10.1007/s10492-009-0003-y
[18] Luo Y W. Regularity of generalized Navier-Stokes equations in terms of direction of the velocity[J]. Electr. J. Difi. Equ., 2010, 105: 1–5.
[19] Luo Y W. Regularity of weak solutions to the Magneto-hydrodynamics equations in terms of the direction of velocity[J]. Electr. J. Difi. Equ., 2009, 132: 1–7.
[20] Zhou Y. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain[J]. Math. Ann., 2004, 328: 173–192. DOI:10.1007/s00208-003-0478-x