数学杂志  2015, Vol. 35 Issue (5): 1042-1052   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
ZHAO Yan-xia
WANG Li
LOCAL AUTOMORPHISMS AND LOCAL DERIVATIONS OF UPPER TRIANGULAR MATRIX LIE ALGEBRA OVER A COMMUTATIVE RING
ZHAO Yan-xia, WANG Li    
School of Math. and Information Science, Henan Polytechnic University, Jiaozuo 454000, China
Abstract: The aim of this paper is to characterize the local automorphisms and local derivations of Tn(R). By using the main result about automorphisms and derivations of Tn(R) and the skill of matrix computation, it is proved that every local automorphism of Tn(R) is an automorphism and that each local derivation of Tn(R) is a derivation, which extend the main result about automorphisms and derivations of Tn(R).
Key words: local automorphisms     local derivations     upper triangular matrix lie algebra     commutative ring    
可换环上上三角矩阵李代数的局部自同构和局部导子
赵延霞, 王丽    
河南理工大学数学与信息科学学院, 河南 焦作 454000
摘要:本文刻画了Tn(R)上的局部自同构和局部导子.利用关于Tn(R)的自同构和导子的主要结果和矩阵计算技巧, 本文证明了Tn(R)上的每一个局部自同构是自同构, 每一个局部导子是导子, 这推广了文献关于Tn(R)的自同构和导子的主要结果.
关键词局部自同构    局部导子    上三角矩阵李代数    可换环    
1 Introduction

Recently, many scholars paid attention to the significant work has been done in studying the local maps. Larson [1] initially considered local maps in his examination of reflexivity and interpolation for subspaces of $\mathcal {B}(\mathcal {H})$, where $\mathcal {H}$ is a Hilbert space. The notion of local derivations (resp., local automorphisms) was introduced independently by Larson and Sourour [2] and Kadison [3] (resp., Larson and Sourour [2]). Recall that a linear map $\delta$ from an algebra $\mathcal{A}$ into itself is called a local derivation (resp., local automorphism) if for every $a\in \mathcal{A}$, there exists a derivation (resp., an automorphism) $\delta_{a}$ of $\mathcal{A}$, depending on $a$, such that $\delta(a)=\delta_{a}(a)$. If every local derivation (resp., local automorphism) of an algebra is a derivation (resp., an automorphism), then we can say that the derivations (resp., automorphisms) of those structures are, in a certain sense, completely determined by their local actions.

Local derivations, local automorphisms and other local maps have been studied in a variety of contexts. Larson and Sourour [2] showed that every local derivation (resp., every surjective linear local automorphism) on $\mathcal{B}(\mathcal{H})$, the algebra of all bounded linear operators on a Banach space $\mathcal{H}$, is a derivation (an automorphism). Zhao, Yao and Wang [4] proved that every local Jordan derivation (resp., local Jordan automorphism) of upper triangular matrix algebra is an inner derivation (resp., a Jordan automorphism). Other work on the description of the local derivations or local automorphisms on operator algebras can be found in [5-7]. In those articles all local derivations or local automorphisms are actually global derivations or automorphisms. A nontrivial local derivation on an operator algebra was found by Crist in [8]. Crist [9] showed that any linear local automorphism of a finite dimensional CSL algebra $\mathcal{A}$ is either an automorphism or can be factored as an automorphism and the transpose of a self-adjoint summand of $\mathcal{A}$.

The algebra $T_{n}(R)$ of all upper triangular matrices over a commutative ring $R$ is an interesting topic for many researchers. Significant research has been done in studying various linear maps of $T_{n}(R)$. In 1990, Kezlan [10] showed that every $R$-algebra automorphism of $T_{n}(R)$ is inner. Cao [11] and Wang and You [12] gave a description of the Lie automorphisms of $T_{n}(R)$. Tang, Cao and Zhang [13] determined all Jordan isomorphisms of $T_{n}(R)$. Wang and Yu [14] determined the derivations of any Lie subalgebra of the general linear Lie algebra containing $T_{n}(R)$. In this paper, we regard $T_{n}(R)$ as a Lie algebra and we shall study the local automorphisms and local derivations of $T_{n}(R)$.

Let $R$ be a commutative ring with identity, $R^{*}$ the group of invertible elements of $R$. In the following of this paper, we use $T_{n}(R)$ (resp., $D_{n}(R)$) denote the Lie algebra of all upper triangular (resp., diagonal) $n$ by $n$ matrices over $R$, $T_{n}^{*}(R)$ the set of all invertible elements in $T_{n}(R)$. We denote by $\textbf{n}$ the subalgebra of $T_{n}(R)$ consisting of all strictly upper triangular matrices. Let $e$ be the identity matrix of $T_{n}(R)$, $e_{i, j}$ the matrix with 1 at the position $(i, j)$ and zero elsewhere for $1\leq i, j\leq n$. For $x\in T_{n}(R)$, denote by $x^{t}$ the transpose of $x$. Let $\mathcal{S}_{k}=\bigg\{\left(\begin{array}{cc}0&\\ &x\end{array}\right)\in T_{n}(R)\mid x\in T_{n-k}(R)\bigg\}$, $k=1, 2, \cdots, n-1$. Obviously, each $\mathcal{S}_{k}$ is a subalgebra of $T_{n}(R)$.

2 Local Automorphisms

Cao [11] and Wang and You [12] gave an explicit description of the automorphisms of $T_{n}(R)$, respectively. For convenience of the proof of the main result in this section, we give another description of the automorphisms of $T_{n}(R)$ by the following lemma. Before giving the lemma, let us introduce some standard automorphisms of $T_{n}(R)$ as follows. In this section, 2 is an unit in $R$.

(A) Inner automorphisms

Let $a\in T_{n}^{*}(R)$, the map $\theta_{a}: x\mapsto axa^{-1}$ for all $x\in T_{n}(R)$ is an automorphism of $T_{n}(R)$, which is called an inner automorphism.

(B) Central automorphisms

Regarding $R$ as an abelian Lie algebra. Let

$ F=\{f\in\mbox{ Hom}_{R}(T_{n}(R), R)\mid 1+f(e)\in R^{*}\}. $

For $f\in F$, we define a map $\eta_{f}: x\mapsto x+f(x)e$ for all $x\in T_{n}(R)$. It can be checked that $\eta_{f}$ is an automorphism of $T_{n}(R)$, which is called a central automorphism. Since $\eta_{f}(\textbf{n})=\textbf{n}, f(y)=0$ for any $y\in \textbf{n}$.

(C) Graph automorphisms

Set $r=e_{1n}+e_{2, n-1}+\cdots+e_{n-1, 2}+e_{n1}$. It is clear that $r^{2}=e$ and $r^{t}=r$. Let $\Upsilon$ be the set of all idempotents in $R$. For $\varepsilon\in \Upsilon$, it is easy to check that the map $w_{\varepsilon}: x\mapsto \varepsilon x-(1-\varepsilon)rx^{t}r$ is an automorphism of $T_{n}(R)$. We call $w_{\varepsilon}$ a graph automorphism.

Lemma 2.1(the main theorem of [11] and [12])  Let $\psi$ be an automorphism of $T_{n}(R)$. Then there exist an inner automorphism $\theta_{a}$, a graph automorphism $w_{\varepsilon}$ and a central automorphism $\eta_{f}$ of $T_{n}(R)$ such that $\psi=\theta_{a}w_{\varepsilon}\eta_{f}$ for $n\geq 3$; $\psi=\theta_{a}\eta_{f}$ when $n=2$; $\psi=\eta_{f}$ for $n=1$.

The following lemma is obvious.

Lemma 2.2  Let $\theta$ be an inner automorphism of $T_{n}(R)$. Then $\theta(E)=\theta(E)^{2}$ for every idempotent $E$ in $T_{n}(R)$.

We will prove our main result in this section via the following lemmas.

Lemma 2.3  Let $\varphi$ be a local automorphism of $T_{n}(R)$ ( $n\geq 3$). If $\varphi(e_{11})=e_{11}$, then we may find an inner automorphism $\theta=\prod_{j=2}^{n}\theta_{b_{j}}$ and a central automorphism $\eta_{f}$ such that $\eta_{f}^{-1}\theta^{-1}\varphi(e_{ii})=e_{ii}$ for $i=1, 2, \cdots, n$.

Proof  For $e_{ii}\in T_{n}(R)$, since $\varphi$ is a local automorphism, there exists an automorphism $\varphi_{e_{ii}}$, depending on $e_{ii}$, such that $\varphi(e_{ii})=\varphi_{e_{ii}}(e_{ii})$. By Lemma 2.1, we know there exist $\varepsilon_{i}\in \Upsilon$, $f_{i}\in F$ and $a_{i}\in T_{n}^{*}(R)$ such that

$ \begin{eqnarray} \varphi(e_{ii})=\varphi_{e_{ii}}(e_{ii})=\theta_{a_{i}} w_{\varepsilon_{i}}\eta_{f_{i}}(e_{ii}). \end{eqnarray} $ (2.1)

In the following, we first prove that $\varepsilon_{i}=1$ for $i=2, 3, \cdots, n$ in (2.1).

From (2.1) we get

$ \begin{eqnarray} &&\varphi(e_{11}+e_{ii})=e_{11}+\varphi(e_{ii})\nonumber\\ &\equiv&e_{11}+\varepsilon_{i}e_{ii}+(2\varepsilon_{i}-1)f_{i}(e_{ii})e -(1-\varepsilon_{i})e_{n+1-i, n+1-i}\ {\mbox{mod}}\ \textbf{n}. \end{eqnarray} $ (2.2)

On the other hand, we have $\varphi(e_{11}+e_{ii})=\varphi_{e_{11}+e_{ii}}(e_{11}+e_{ii})$, where $\varphi_{e_{11}+e_{ii}}$ is an automorphism depending on $e_{11}+e_{ii}$. By Lemma 2.1, we have $\varphi_{e_{11}+e_{ii}}=\theta_{a_{i}^{'}} w_{\varepsilon_{i}^{'}}\eta_{f_{i}^{'}}$ for some $a_{i}^{'}\in T_{n}^{*}(R), \ \varepsilon_{i}^{'}\in \Upsilon$ and $f_{i}{'}\in F$, so

$ \begin{eqnarray} &&\varphi(e_{11}+e_{ii})=\theta_{a_{i}^{'}} w_{\varepsilon_{i}^{'}}\eta_{f_{i}^{'}}(e_{11}+e_{ii})\nonumber\\ &\equiv&\varepsilon_{i}^{'}(e_{11}+e_{ii})+(2\varepsilon_{i}^{'}-1) f_{i}^{'}(e_{11}+e_{ii})e -(1-\varepsilon_{i}^{'})(e_{nn}+e_{n+1-i, n+1-i})\ {\mbox{mod}}\ \textbf{n}. \end{eqnarray} $ (2.3)

From (2.2) and (2.3), we have $\varepsilon_{i}=\varepsilon^{'}_{i}=1$ for $i=2, 3, \cdots, n$. That is to say

$ \begin{eqnarray}\varphi(e_{ii})=\theta_{a_{i}} \eta_{f_{i}}(e_{ii}), i=2, 3, \cdots, n.\end{eqnarray} $ (2.4)

Next we use induction to prove that there exists an inner automorphism $\theta$ such that $\theta^{-1}\varphi(e_{ii})=e_{ii}+f_{i}(e_{ii})e$ for $i=2, \cdots, n$, and $\theta^{-1}\varphi(e_{11})=e_{11}$. Let $i=2$ in (2.2) and (2.3), we have

$ \begin{eqnarray}f_{2}(e_{22})=f^{'}_{2}(e_{11}+e_{22}).\nonumber\end{eqnarray} $

So

$ \begin{eqnarray} \varphi(e_{11}+e_{22}) =\theta_{a_{2}^{'}} \eta_{f_{2}^{'}}(e_{11}+e_{22}) =\theta_{a_{2}^{'}}(e_{11}+e_{22})+f_{2}(e_{22})e. \end{eqnarray} $ (2.5)

On the other hand, by (2.4) we have

$ \begin{eqnarray} \varphi(e_{11}+e_{22})&=&e_{11}+\varphi(e_{22}) =e_{11}+\theta_{a_{2}}(e_{22})+f_{2}(e_{22})e. \end{eqnarray} $ (2.6)

(2.5) and (2.6) imply that $\theta_{a_{2}^{'}}(e_{11}+e_{22})=e_{11}+\theta_{a_{2}}(e_{22}).$ The idempotence of $e_{11}+e_{22}$ shows that the image of it under $\varphi$ is also idempotent. So $\theta_{a_{2}}(e_{22})\in \mathcal{S}_{1}.$ Suppose $a_{2}=(a_{ij}^{(2)})_{n\times n}$. Let $b_{2}=(b_{ij}^{(2)})_{n\times n}$, where $b_{11}^{(2)}=a_{11}^{(2)}, b_{ij}^{(2)}=a_{ij}^{(2)}$ for $2\leq i\leq j\leq n$, and $b_{1j}^{(2)}=0$ for $2\leq j\leq n$. Then $\theta_{b_{2}}(e_{22})=\theta_{a_{2}}(e_{22}).$ So

$ \theta_{b_{2}}^{-1}\varphi(e_{22})=e_{22}+f_{2}(e_{22})e \ \ \ {\mbox{and}}\ \ \ \theta_{b_{2}}^{-1}\varphi(e_{11})=e_{11}. $

Denote $\theta_{b_{2}}^{-1}\varphi$ by $\varphi_{1}$.

By induction we assume that there are $\theta_{b_{j}}, j=3, 4, \cdots, k-1$ such that

$\begin{eqnarray*} (\prod\limits_{j=3}^{k-1}\theta_{b_{j}})^{-1}\varphi_{1}(e_{11})=e_{11}\end{eqnarray*} $

and $(\prod_{j=3}^{k-1}\theta_{b_{j}})^{-1}\varphi_{1}(e_{ii})=e_{ii}+f_{i}(e_{ii})e$, where $f_{i}\in F, i=2, 3, \cdots, k-1.$ Denote $(\prod_{j=3}^{k-1}\theta_{b_{j}})^{-1}\varphi_{1}$ by $\varphi_{k-2}$. By (2.4), we know there exist some $u\in T_{n}^{*}(R)$ and $f_{k}\in F$ such that

$ \varphi_{k-2}(e_{kk})=\theta_{u}(e_{kk}+f_{k}(e_{kk})e)=\theta_{u}(e_{kk})+f_{k}(e_{kk})e. $

So

$ \begin{eqnarray} &&\varphi_{k-2}(e_{11}+\cdots+e_{k-1, k-1}+e_{kk})\nonumber\\ &=&e_{11}+\cdots+e_{k-1, k-1}+(f_{2}(e_{22})+ \cdots+f_{k}(e_{kk}))e+\theta_{u}(e_{kk})\end{eqnarray} $ (2.7)
$\begin{eqnarray} &&\equiv&e_{11}+\cdots+e_{kk}+(f_{2}(e_{22})+ \cdots+f_{k}(e_{kk}))e\ {\mbox{mod}}\ \textbf{n}. \end{eqnarray} $ (2.8)

On the other hand, since $\varphi_{k-2}$ is a local automorphism, there exists an automorphism $\psi=\theta_{t}w_{\alpha}\eta_{\sigma}$, where $t\in T_{n}^{*}(R), \ \alpha\in \Upsilon$ and $\sigma\in F$, depending on $e_{11}+\cdots+e_{kk}$, such that

$ \begin{eqnarray} \varphi_{k-2}(e_{11}+\cdots+e_{kk}) &=&\psi(e_{11}+\cdots+e_{kk})\nonumber\\ &\equiv&\alpha(e_{11}+\cdots+e_{kk})+(2\alpha-1)\sigma(e_{11}+\cdots+e_{kk})e\nonumber\\ &-&(1-\alpha)(e_{nn}+\cdots+e_{n+1-k, n+1-k})\ {\mbox{mod}}\ \textbf{n}. \end{eqnarray} $ (2.9)

By (2.8) and (2.9) we get

$ \begin{eqnarray} \varphi_{k-2}(e_{11}+\cdots+e_{kk}) &=&\theta_{t}(e_{11}+\cdots+e_{kk})+(f_{2}(e_{22})+ \cdots+f_{k}(e_{kk}))e. \end{eqnarray} $ (2.10)

From (2.7) and (2.10), we have $\theta_{t}(e_{11}+\cdots+e_{kk})=e_{11}+\cdots+e_{k-1, k-1}+\theta_{u}(e_{kk}).$ Since $e_{11}+\cdots+e_{kk}$ is idempotent, then by Lemma 2.2, we get

$ [e_{11}+\cdots+e_{k-1, k-1}+\theta_{u}(e_{kk})]^{2}=e_{11}+\cdots+e_{k-1, k-1}+\theta_{u}(e_{kk}), $

which means that $\theta_{u}(e_{kk})\in \mathcal{S}_{k-1}.$ Suppose $u=(u_{ij})_{n\times n}$. Let $b_{k}=(b_{ij}^{(k)})_{n\times n}$, where $b_{ii}^{(k)}=u_{ii}, \ i=1, 2, \cdots, k-1, b_{ij}^{(k)}=u_{ij}$ for $k\leq i\leq j\leq n$, and $b_{ts}^{(k)}=0$ for $t=1, 2, \cdots, k-1, t< s\leq n$. By calculating, we have $\theta_{b_{k}}(e_{kk})=\theta_{u}(e_{kk}).$ So

$ \begin{eqnarray} \theta_{b_{k}}^{-1}\varphi_{k-2}(e_{11})&=&e_{11}, \nonumber\\ \theta_{b_{k}}^{-1}\varphi_{k-2}(e_{ii})&=&e_{ii}+f_{i}(e_{ii})e \ {\mbox{for}}\ i=2, \cdots, k.\nonumber \end{eqnarray} $

When $k=n$, let $\theta=\prod_{j=2}^{n}\theta_{b_{j}}$. Then $\theta^{-1}\varphi(e_{11})=e_{11}$, and $\theta^{-1}\varphi(e_{ii})=e_{ii}+f_{i}(e_{ii})e$ for $i=2, \cdots, n$.

Let $f$ be an $R-$linear map satisfying $f(e_{11})=0, f(e_{ii})=f_{i}(e_{ii})$ for $i=2, \cdots, n$ and $f(e_{ij})=0$ for $1\leq i< j\leq n$. Then $f\in $Hom$_{R}(T_{n}(R), R)$. It is easy to check that $1+f(e)\in R^{*}$. Thus $f\in F$ and $\eta_{f}^{-1}\theta^{-1}\varphi(e_{ii})=e_{ii}\ {\mbox{for}}\ i=1, 2, \cdots, n.$

Lemma 2.4  Let $\varphi$ be a local automorphism of $T_{n}(R)$ satisfying $\varphi(e_{ii})=e_{ii}$ for $i=1, 2, \cdots, n$. Then $\varphi(e_{ij})=a_{ij}e_{ij}$, where $1\leq i < j\leq n$ and $a_{ij}\in R^{*}$.

Proof  For $1\leq i < j\leq n$, there exists an automorphism $\varphi_{e_{ii}+e_{jj}}$ which agree with $\varphi$ at $e_{ii}+e_{ij}$. By Lemma 2.1, we know there exist $\beta_{ij}\in \Upsilon$, $\tau_{ij}\in F$ and $u_{ij}\in T_{n}^{*}(R)$ such that $\varphi_{e_{ii}+e_{ij}}=\theta_{u_{ij}}w_{\beta_{ij}}\eta_{\tau_{ij}}.$ So

$ \begin{eqnarray} &&\varphi(e_{ii}+e_{ij})=\theta_{u_{ij}}w_{\beta_{ij}}\eta_{\tau_{ij}}(e_{ii}+e_{ij})\nonumber\\ &\equiv&\beta_{ij}e_{ii}+(2\beta_{ij}-1)\tau_{ij}(e_{ii}+e_{ij})e-(1-\beta_{ij})e_{n+1-i, n+1-i}\ {\mbox{mod}}\ \textbf{n}. \end{eqnarray} $ (2.11)

On the other hand,

$ \begin{eqnarray} \varphi(e_{ii}+e_{ij})=e_{ii}+\varphi(e_{ij})\equiv e_{ii}\ {\mbox{mod}}\ \textbf{n}. \end{eqnarray} $ (2.12)

So $\beta_{ij}=1$ and $\tau_{ij}(e_{ii}+e_{ij})=0$ follow from (2.11) and (2.12). Thus

$ e_{ii}+\varphi(e_{ij})=\varphi(e_{ii}+e_{ij})=\theta_{u_{ij}}(e_{ii}+e_{ij}). $

Similarly, there exists some $h_{ij}\in T_{n}^{*}(R)$ such that

$ e_{jj}+\varphi(e_{ij})=\varphi(e_{jj}+e_{ij})=\theta_{h_{ij}}(e_{jj}+e_{ij}). $

Since $e_{ii}+e_{ij}$ and $e_{jj}+e_{ij}$ are idempotents, by Lemma 2.2, we know that the image of them under $\varphi$ are also idempotent, which imply that $\varphi(e_{ij})=a_{ij}e_{ij}$ for some $a_{ij}\in R$. Clearly, $a_{ij}\in R^{*}$.

Lemma 2.5  Let $\varphi$ be a local automorphism of $T_{n}(R)$ satisfying $\varphi(e_{ii})=e_{ii}$ for $i=1, 2, \cdots, n$. Then there exists an inner automorphism $\theta_{d}$ such that $\theta_{d}\varphi(e_{i, i+1})=e_{i, i+1}$ for $i=1, 2, \cdots, n-1$, and $\theta_{d}\varphi(e_{ii})=e_{ii}$ for $i=1, 2, \cdots, n$.

Proof  By Lemma 2.4, we have $\varphi(e_{i, i+1})=a_{i, i+1}e_{i, i+1}$ with $a_{i, i+1}\in R^{*}$. Let

$ d={\mbox{diag}}(1, a^{-1}_{12}, (a_{12}a_{23})^{-1}, \cdots, (a_{12}a_{23}\cdots a_{n-1, n})^{-1}). $

Then $\theta_{d}^{-1}\varphi(e_{i, i+1})=e_{i, i+1}$ for $i=1, 2, \cdots, n-1$, and $\theta_{d}^{-1}\varphi(e_{ii})=e_{ii}$ for $i=1, 2, \cdots, n$.

Lemma 2.6  Let $\varphi$ be a local automorphism of $T_{n}(R)$. If $\varphi(e_{ii})=e_{ii}$ for $i=1, 2, \cdots, n$, and $\varphi(e_{i, i+1})=e_{i, i+1}$ for $i=1, 2, \cdots, n-1$, then for any $e_{i, i+k}\in T_{n}(R)$, we have

$ \varphi(e_{i, i+k})=e_{i, i+k}. $

Proof  We will prove this lemma by induction on $k\ (k\geq 2)$. When $k=2$, since $\varphi$ is a local automorphism, we have

$ \varphi(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1})=\phi_{i}^{(2)}(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1}), $

where $\phi_{i}^{(2)}$ is an automorphism corresponding to $e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1}$. By Lemma 2.1, we know there exist $\gamma_{i}^{(2)}\in \Upsilon$, $\sigma_{i}^{(2)}\in F$ and $x_{i}^{(2)}\in T_{n}^{*}(R)$ such that $\phi_{i}^{(2)}=\theta_{x_{i}^{(2)}}w_{\gamma_{i}^{(2)}}\eta_{\sigma_{i}^{(2)}}$. So

$ \begin{eqnarray} &&\varphi(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1})\nonumber\\ &\equiv&\gamma_{i}^{(2)}e_{i+1, i+1}-(1-\gamma_{i}^{(2)})e_{n-i, n-i}+(2\gamma_{i}^{(2)}-1)\sigma_{i}^{(2)}(e_{i+1, i+1})e\ {\mbox{mod}}\ \textbf{n}. \end{eqnarray} $ (2.13)

On the other hand, by Lemma 2.4, we have

$ \begin{eqnarray} &&\varphi(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1})\nonumber\\ &=&e_{i, i+1}+e_{i+1, i+2}+e_{i+1, i+1}+a_{i, i+2}e_{i, i+2} \equiv e_{i+1, i+1}\ {\mbox{mod}}\ \textbf{n}. \end{eqnarray} $ (2.14)

From (2.13) and (2.14), we have $\gamma_{i}^{(2)}=1$ and $\sigma_{i}^{(2)}(e_{i+1, i+1})=0$. So

$ \theta_{x_{i}^{(2)}}(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1})=e_{i, i+1}+e_{i+1, i+2}+e_{i+1, i+1}+a_{i, i+2}e_{i, i+2}. $

The idempotence of $e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1}$ and Lemma 2.2 impliy that $a_{i, i+2}=1$. So $\varphi(e_{i.i+2})=e_{i.i+2}$.

By induction we assume that $\varphi(e_{i, i+m})=e_{i, i+m}$ for $m=2, \cdots, k-1$. For $e_{i, i+1}+e_{i+1, i+k}+e_{i, i+k}+e_{i+1, i+1}$, similar to the case $k=2$, we can get that there exists some $x_{i}^{(k)}\in T_{n}^{*}(R)$ such that

$ \theta_{x_{i}^{(k)}}(e_{i, i+1}+e_{i+1, i+k}+e_{i, i+k}+e_{i+1, i+1})=e_{i, i+1}+e_{i+1, i+k}+e_{i+1, i+1}+a_{i, i+k}e_{i, i+k}. $

Also by the idempotence of $e_{i, i+1}+e_{i+1, i+k}+e_{i, i+k}+e_{i+1, i+1}$ and Lemma 2.2, we can prove that $a_{i, i+k}=1$. That is to say $\varphi(e_{i, i+k})=e_{i, i+k}$ for any $e_{i, i+k}\in T_{n}(R)$.

Theorem 2.1  Let $R$ be a commutative ring with identity 1 and unit 2, $T_{n}(R)$ the Lie algebra consisting of all upper triangular $n\times n$ matrices over $R$. Then every local automorphism $\varphi$ of $T_{n}(R)$ is an automorphism.

Proof  Let $\varphi$ be a local automorphism of $T_{n}(R)$. When $n\geq 3$, for $e_{11}\in T_{n}(R)$, by the definition of $\varphi$, there exists an automorphism $\varphi_{e_{11}}$, depending on $e_{11}$, such that $\varphi(e_{11})=\varphi_{e_{11}}(e_{11})$. So $\varphi_{e_{11}}^{-1}\varphi(e_{11})=e_{11}$. Obviously, $\varphi_{e_{11}}^{-1}\varphi$ is also a local automorphism of $T_{n}(R)$. By Lemmas 2.3, 2.5 and 2.6, there are $\eta_{f}^{-1}, \theta^{-1}$ and $\theta_{d}^{-1}$ such that

$ \theta_{d}^{-1}\eta_{f}^{-1}\theta^{-1}\varphi_{e_{11}}^{-1}\varphi(e_{ij})=e_{ij}\ {\mbox{for}}\ 1\leq i\leq j\leq n, $

which mean that $\varphi=\varphi_{e_{11}}\theta\eta_{f}\theta_{d}.$ So $\varphi$ is an automorphism.

When $n=1$, suppose that $\varphi(1)=a$, then for any $x\in T_{1}(R)=R$ we have $\varphi(x)=x\varphi(1)=xa=\eta_{f}(x), $ where $f: R\rightarrow R, x\mapsto (a-1)x$ is an $R-$linear map from $R$ to $R$. So $\varphi$ is an automorphism.

When $n=2$, similar to the case $n\geq 3$, there is an automorphism $\varphi_{e_{11}}$, depending on $e_{11}$, such that $\varphi_{e_{11}}^{-1}\varphi(e_{11})=e_{11}$. Denote $\varphi_{e_{11}}^{-1}\varphi$ by $\varphi_{1}$. Clearly, $\varphi_{1}$ is also a local automorphism of $T_{2}(R)$, by Lemma 2.1, there exist an inner automorphism $\theta_{a_{2}}$ and a central automorphism $\eta_{f_{2}}$, corresponding to $e_{22}$, such that $\varphi_{1}(e_{22})=\theta_{a_{2}}\eta_{f_{2}}(e_{22})=\theta_{a_{2}}(e_{22})+f_{2}(e_{22})e.$ So

$ \begin{eqnarray} \varphi_{1}(e_{11}+e_{22}) =e_{11}+\theta_{a_{2}}(e_{22})+f_{2}(e_{22})e \equiv e+f_{2}(e_{22})e\ {\mbox{mod}}\ \textbf{n}. \end{eqnarray} $ (2.15)

On the other hand, there exist an inner automorphism $\theta_{b_{2}}$ and a central automorphism $\eta_{g_{2}}$, depending on $e_{11}+e_{22}$, such that

$ \begin{eqnarray} \varphi_{1}(e_{11}+e_{22})=\theta_{b_{2}}\eta_{g_{2}}(e_{11}+e_{22})=e+g_{2}(e)e. \end{eqnarray} $ (2.16)

From (2.15) and (2.16), we get $\theta_{a_{2}}(e_{22})=e_{22}$. Now we have $\varphi_{1}(e_{11})=e_{11}$ and $\varphi_{1}(e_{22})=e_{22}+f_{2}(e_{22})$. Let $f$ be an $R-$linear map satisfying $f(e_{11})=0, f(e_{22})=f_{2}(e_{22})$, it is easy to check that $f\in F$ and $\eta_{f}^{-1}\varphi_{1}(e_{ii})=e_{ii}\ {\mbox{for}}\ i=1, 2.$

Denote $\eta_{f}^{-1}\varphi_{1}$ by $\varphi_{2}$. Since $\varphi_{2}$ is a local automorphism, by Lemma 2.1, we have $\varphi_{2}(e_{12})=\theta_{x}(e_{12})=ae_{12}$, where $\theta_{x}$ is an inner automorphism depending on $e_{12}$ and $a\in R^{*}$. Let $z=$diag $(1, a^{-1}), $ then $\theta_{z}^{-1}\varphi_{2}(e_{ij})=e_{ij}, 1\leq i\leq j\leq 2$, which mean $\theta_{z}^{-1}\eta_{f}^{-1}\varphi_{e_{11}}^{-1}\varphi=1, $ that is $\varphi=\varphi_{e_{11}}\eta_{f}\theta_{z}$. So $\varphi$ is an automorphism.

3 Local Derivation

In [14], Wang and Yu characterized the derivations of $T_{n}(R)$ by the following lemma. Before giving this lemma, we first introduce two standard derivations of $T_{n}(R)$.

(A) Inner derivations

Let $t\in T_{n}(R)$, then ad $t: x\mapsto[t, x], x\in T_{n}(R)$ is a derivation of $T_{n}(R)$, which is called an inner derivation of $T_{n}(R)$ induced by $t$.

(B) Central derivations

We denote by Hom $(D_{n}(R), R)$ the set of all $R$-module homomorphisms from $D_{n}(R)$ to $R$. For any $\sigma\in$Hom $(D_{n}(R), R)$, $\sigma$ may be extended to a derivation $\eta_{\sigma}$ of $T_{n}(R)$ by: $\eta_{\sigma}(d+x)=\sigma(d)e$ for all $d\in D_{n}(R), x\in \textbf{n}$. $\eta_{\sigma}$ is called a central derivation of $T_{n}(R)$ induced by $\sigma$.

Lemma 3.1(the theorem of [14])  Let $R$ be a commutative ring with identity. Then

(1) every derivation of $T_{n}(R)$ can be uniquely written as the sum of an inner derivation and a central derivation when $n\geq 2$.

(2) every derivation of $T_{n}(R)$ is a central derivation when $n=1$.

In order to achieve our goal, we also need other lemmas.

Lemma 3.2  Let $\delta$ be a local derivation of $T_{n}(R), n\geq 2$. If $\delta(e_{11})=0$, then there exist an inner derivation ad $m=\sum_{j=2}^{n}$ad $m_{j}$ and a central derivation $\eta_{\sigma}$ such that $(\delta-{\mbox{ad}}\ m-\eta_{\sigma})(e_{ii})=0\ {\mbox{for}}\ i=1, 2, \cdots, n.$

Proof  By the definition of $\delta$ and Lemma 3.1, there exists a derivation $\delta_{e_{22}}={\mbox{ad}}\ t_{2}+\eta_{\sigma_{2}}$, corresponding to $e_{22}$, such that

$ \begin{eqnarray} \delta(e_{11}+e_{22})=\delta(e_{11})+\delta(e_{22})=0+\delta_{e_{22}}(e_{22})={\mbox{ad}}\ t_{2}(e_{22})+\sigma_{2}(e_{22})e. \end{eqnarray} $ (3.1)

On the other hand, there is a derivation $\delta_{e_{11}+e_{22}}$=ad $s_{2}+\eta_{\alpha_{2}}$, depending on $e_{11}+e_{22}$, such that

$ \begin{eqnarray} \delta(e_{11}+e_{22})=\delta_{e_{11}+e_{22}}(e_{11}+e_{22})={\mbox{ad}}\ s_{2}(e_{11}+e_{22})+\alpha_{2}(e_{11}+e_{22})e. \end{eqnarray} $ (3.2)

Suppose $t_{2}=(t_{ij}^{(2)})_{n\times n}$, from (3.1) and (3.2), we have $t_{12}^{(2)}=0$. Let $m_{2}=(m_{ij}^{(2)})_{n\times n}$, where $m_{ij}^{(2)}=t_{ij}^{(2)}$ for $2\leq i\leq j\leq n$, and $m_{1j}^{(2)}=0$ for $1\leq j\leq n$. Then $(\delta-{\mbox{ad}}\ m_{2})(e_{11})=0$ and $(\delta-{\mbox{ad}}\ m_{2})(e_{22})=\sigma_{2}(e_{22})e$. Denote $\delta-{\mbox{ad}}\ m_{2}$ by $\delta_{1}$.

By induction we assume that there are ad $m_{j}, j=3, 4, \cdots, k-1$ such that

$ (\delta_{1}-\sum\limits_{j=3}^{k-1}{\mbox{ad}}\ m_{j})(e_{11})=0 \ {\mbox{and}}\ (\delta_{1}-\sum\limits_{j=3}^{k-1}{\mbox{ad}}\ m_{j})(e_{ii})=\sigma_{i}(e_{ii})e, $

where $\sigma_{i}\in$Hom $(D_{n}(R), R), i=2, \cdots, k-1$. Denote $\delta_{1}-\sum_{j=3}^{k-1}{\mbox{ad}}\ m_{j}$ by $\delta_{k-2}$. It is obvious that $\delta_{k-2}$ is also a local derivation. By Lemma 3.1, there exist an inner derivation ad $t_{k}$ and a central derivation $\eta_{\sigma_{k}}$, depending on $e_{kk}$, such that

$ \begin{eqnarray} &&\delta_{k-2}(e_{11}+e_{22}+\cdots+e_{kk})\nonumber\\ &=&\sigma_{2}(e_{22})e+\cdots+\sigma_{k-1}(e_{k-1, k-1})e+{\mbox{ad}}\ t_{k}(e_{kk})++\sigma_{k}(e_{kk})e. \end{eqnarray} $ (3.3)

On the other hand, since $\delta_{k-2}$ is a local derivation, we have

$ \begin{eqnarray} &&\delta_{k-2}(e_{11}+e_{22}+\cdots+e_{kk})\nonumber\\ &=&{\mbox{ad}}\ s_{k}(e_{11}+e_{22}+\cdots+e_{kk})+\alpha_{k}(e_{11}+e_{22}+\cdots+e_{kk})e, \end{eqnarray} $ (3.4)

where $s_{k}\in T_{n}(R)$ and $\alpha_{k}\in$Hom $(D_{n}(R), R)$, depending on $e_{11}+e_{22}+\cdots+e_{kk}$. Suppose $t_{k}=(t_{ij}^{(k)})_{n\times n}.$ By (3.3) and (3.4), we have $t_{jk}^{(k)}=0$ for $1\leq j\leq k-1$. Let $m_{k}=(m_{ij}^{(k)})_{n\times n}$, where $m_{ij}^{(k)}=t_{ij}^{(k)}$ for $k\leq i\leq j\leq n$, and $m_{st}^{(k)}=0$ for $1\leq s\leq k-1, s\leq t\leq n$. Then $(\delta_{k-2}-{\mbox{ad}}\ m_{k})(e_{11})=0$ and $(\delta_{k-2}-{\mbox{ad}}\ m_{k})(e_{ii})=\sigma_{i}(e_{ii})e$ for $2\leq i\leq k$.

When $k=n$, let $m=\sum\limits_{j=2}^{n}m_{j}$. Then

$ (\delta-{\mbox{ad}}\ m)(e_{11})=0, \ {\mbox{and}}\ (\delta-{\mbox{ad}}\ m)(e_{ii})= \sigma_{i}(e_{ii})e\ {\mbox{for}}\ i=2, 3, \cdots, n. $

Let $\sigma$ be an $R-$linear map from $D_{n}(R)$ to $R$, and define $\sigma(e_{11})=0, \sigma(e_{ii})=\sigma_{i}(e_{ii})$ for $i=2, 3, \cdots, n$. Then $\sigma\in$Hom $(D_{n}(R), R)$ and $(\delta-{\mbox{ad}}\ m-\eta_{\sigma})(e_{ii})=0$ for $i=1, 2, \cdots, n.$

Lemma 3.3  Let $\delta$ be a local derivation of $T_{n}(R)$ satisfying $\delta(e_{ii})=0$ for $i=1, 2, \cdots, n$. Then $\delta(e_{ij})=a_{ij}e_{ij}$ for some $a_{ij}\in R$ and $1\leq i<j\leq n$.

Proof  For $e_{ii}+e_{ij}, j\neq i$, since $\delta$ is a local derivation, from Lemma 3.1 we know there exist an inner derivation ${\mbox{ad}}\ x_{ij}$ and a central derivation $\eta_{\gamma_{ij}}$, depending on $e_{ii}+e_{ij}$, such that

$ \begin{eqnarray} \delta(e_{ii}+e_{ij})=({\mbox{ad}}\ x_{ij}+\eta_{\gamma_{ij}})(e_{ii}+e_{ij})={\mbox{ad}}\ x_{ij}(e_{ii}+e_{ij})+\gamma_{ij}(e_{ii}+e_{ij})e. \end{eqnarray} $ (3.5)

On the other hand, by the definition of $\delta$ and Lemma 3.1, we have

$ \begin{eqnarray} \delta(e_{ii}+e_{ij})=\delta(e_{ii})+\delta(e_{ij})=\delta(e_{ij})={\mbox{ad}}\ p_{ij}(e_{ij})\in \textbf{n}, \end{eqnarray} $ (3.6)

where $p_{ij}\in T_{n}(R)$ depending on $e_{ij}$. By (3.5) and (3.6), we have

$ \begin{eqnarray} {\mbox{ad}}\ x_{ij}(e_{ii}+e_{ij})={\mbox{ad}}\ p_{ij}(e_{ij}). \end{eqnarray} $ (3.7)

Similarly, there exists some $y_{ij}\in T_{n}(R)$ such that

$ \begin{eqnarray} {\mbox{ad}}\ y_{ij}(e_{jj}+e_{ij})={\mbox{ad}}\ p_{ij}(e_{ij}). \end{eqnarray} $ (3.8)

(3.7) and (3.8) imply that $\delta(e_{ij})=a_{ij}e_{ij}$ for some $a_{ij}\in R$ and $1\leq i<j\leq n$.

Lemma 3.4  Let $\delta$ be a local derivation of $T_{n}(R)$. If $\delta(e_{ii})=0$ for $i=1, 2, \cdots, n$, then there exists some $h\in T_{n}(R)$ such that $(\delta-{\mbox{ad}}\ h)(e_{i, i+1})=0 \ {\mbox{for}}\ i=1, 2, \cdots, n-1, $ and $(\delta-{\mbox{ad}}\ h)(e_{ii})=0 \ {\mbox{for}}\ i=1, 2, \cdots, n.$

Proof  By Lemma 3.3, we have $\delta(e_{i, i+1})=a_{i, i+1}e_{i, i+1}$ for some $a_{i, i+1}\in R$. Let

$ h={\mbox{diag}}(0, -a_{12}, -(a_{12}+a_{23}), \cdots, -(a_{12}+a_{23}+\cdots+a_{n-1, n})). $

Then $(\delta-{\mbox{ad}}\ h)(e_{i, i+1})=0 \ {\mbox{for}}\ i=1, 2, \cdots, n-1, $ and $(\delta-{\mbox{ad}}\ h)(e_{ii})=0 \ {\mbox{for}}\ i=1, 2, \cdots, n.$

Lemma 3.5  Let $\delta$ be a local derivation of $T_{n}(R)$ satisfying $\delta(e_{ii})=0$ for $i=1, 2, \cdots, n$, and $\delta(e_{i, i+1})=0$ for $i=1, 2, \cdots, n-1$. Then we have $\delta(e_{i, i+k})=0$ for any $e_{i, i+k}\in T_{n}(R).$

Proof  We will prove this lemma by induction on $k, k\geq 2$. When $k=2, $ for $e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1}$, since $\delta$ is a local derivation, by Lemma 3.1, there exist an inner derivation ${\mbox{ad}}\ q_{i}^{(2)}$ and a central derivation $\eta_{\chi_{i}^{(2)}}$, depending on $e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1}$, such that

$ \begin{eqnarray} &&\delta(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1})\nonumber\\ &=&{\mbox{ad}}\ q_{i}^{(2)}(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1})\nonumber\\ &&+ \chi_{i}^{(2)}(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1})e. \end{eqnarray} $ (3.9)

On the other hand, By Lemma 3.3, we have

$ \begin{eqnarray} \delta(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1})=a_{i, i+2}e_{i, i+2}. \end{eqnarray} $ (3.10)

From (3.9) and (3.10), we have

$ {\mbox{ad}}\ q_{i}^{(2)}(e_{i, i+1}+e_{i+1, i+2}+e_{i, i+2}+e_{i+1, i+1})=a_{i, i+2}e_{i, i+2}, $

this forces that $a_{i, i+2}=0$, that is to say $\delta(e_{i, i+2})=0$.

By induction we assume that $\delta(e_{i, i+m})=0$ for $m=2, 3, \cdots, k-1.$ For

$ e_{i, i+1}+e_{i+1, i+k}+e_{i, i+k}+e_{i+1, i+1}, $

similar to the case $k=2$, we can get there exists some $q_{i}^{(k)}\in T_{n}(R)$ such that

$ {\mbox{ad}}\ q_{i}^{(k)}(e_{i, i+1}+e_{i+1, i+k}+e_{i, i+k}+e_{i+1, i+1})=a_{i, i+k}e_{i, i+k}, $

which means that $a_{i, i+k}=0$. So $\delta(e_{i, i+k})=0$ for any $e_{i, i+k}\in T_{n}(R)$.

By those lemmas, we can prove the following theorem.

Theorem 3.1  Let $R$ be a commutative ring with identity, $T_{n}(R)$ the Lie algebra consisting of all upper triangular $n\times n$ matrices over $R$. Then every local derivation $\delta$ of $T_{n}(R)$ is a derivation.

Proof  Let $\delta$ be a local derivation of $T_{n}(R)$. When $n\geq 2$, for $e_{11}\in T_{n}(R)$, there exists a derivation $\delta_{e_{11}}$, depending on $e_{11}$, such that $\delta(e_{11})=\delta_{e_{11}}(e_{11})$. So $(\delta-\delta_{e_{11}})(e_{11})=0$. Clearly, $\delta-\delta_{e_{11}}$ is also a local derivation of $T_{n}(R)$. By Lemmas 3.2--3.5, we know there exist $\eta_{\sigma}, $ ad $m$ and ad $h$ such that

$ (\delta-{\mbox{ad}}\ m-\eta_{\sigma}-{\mbox{ad}}\ h)(e_{ij})=0\ {\mbox{for}}\ 1\leq i\leq j\leq n, $

which imply that $\delta={\mbox{ad}}\ m+\eta_{\sigma}+{\mbox{ad}}\ h$, so $\delta$ is a derivation.

When $n=1$, suppose that $\delta(1)=b$, then for any $x\in T_{1}(R)=R$, we have

$ \delta(x)=x\delta(1)=xb=\eta_{\sigma}(x), $

where $\sigma: R\rightarrow R, x\mapsto bx$ is an $R$-linear from $R$ to $R$. So $\delta$ is a derivation.

References
[1] Larson D R. Reflexivity, algebraic reflexivity, and linear interpolation[J]. Amer. J. Math., 1988, 110(2): 283–299. DOI:10.2307/2374503
[2] Larson D R, Sourour A R. Local derivations and local automorphisms of B(H)[J]. Proc. Sympos. Pure Math., 1990, 51(2): 187–194.
[3] Kadison R V. Local derivations[J]. J. Algebra, 1990, 130(2): 494–509. DOI:10.1016/0021-8693(90)90095-6
[4] Zhao Yanxia, Yao Ruiping, Wang Dengyin. Local Jordan derivations and local Jordan automorphisms of upper triangular matrix algebras[J]. J. Math. Research and Exposition, 2010, 30(3): 465–474.
[5] Johnson B E. Local derivations on C*-algebras are derivations[J]. Trans. Amer. Math. Soc., 2000, 353(1): 314–325.
[6] Zhang Jianhua, Ji Guoxing, Cao Huaixin. Local derivations of nest subalgebras of von Neumann algebras[J]. Linear Algebra Appl., 2004, 392: 61–69. DOI:10.1016/j.laa.2004.05.015
[7] Zhang Jianhua, Yang Aili, Pan Fangfang. Local automorphisms of nest subalgebras of factor Von Neumann algebras[J]. Linear Algebra Appl., 2005, 402: 335–344. DOI:10.1016/j.laa.2005.01.005
[8] Crist R. Local derivations on operation algebras[J]. J. Funct. Anal., 1996, 135(1): 76–92. DOI:10.1006/jfan.1996.0004
[9] Crist R. Local automorphisms[J]. Pro. Amer. Math. Soc., 2000, 128(5): 1409–1414. DOI:10.1090/S0002-9939-99-05282-X
[10] Kezlan T P. A note on algebra automorphisms of triangular matrices over commutative rings[J]. Linear Algebra Appl., 1990, 135: 181–184. DOI:10.1016/0024-3795(90)90121-R
[11] Cao Youan. Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring[J]. J. Algebra, 1997, 189(2): 506–513. DOI:10.1006/jabr.1996.6866
[12] Wang Xingtao, You Hong. Decomposition of Lie automorphisms of upper triangular matrix algebra over commutative rings[J]. Linear Algebra Appl., 2006, 419(2-3): 466–474. DOI:10.1016/j.laa.2006.05.012
[13] Tang Xiaoming, Cao Chongguang, Zhang Xian. Modular automorphisms preserving idempotence and Jordan isomorphisms of triangular matrices over commutative rings[J]. Linear Algebra Appl., 2001, 338(1-3): 145–152. DOI:10.1016/S0024-3795(01)00379-2
[14] Wang Dengyin, Yu Qiu. Derivations of the parabolic subalgebras of the general linear Lie algebra over a com mutative ring[J]. Linear Algebra Appl., 2006, 418(2-3): 763–774. DOI:10.1016/j.laa.2006.03.010