数学杂志  2015, Vol. 35 Issue (3): 477-485   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WANG Yue
ZHANG Qing-cai
ALGEBRAIC SOLUTIONS OF SYSTEMS OF COMPLEX DIFFERENTIAL EQUATIONS
WANG Yue, ZHANG Qing-cai    
School of Information, Renmin University of China, Beijing 100872, China
Abstract: This paper investigates the problem of existence of algebraic solutions of system of complex difierential equations. Using maximum modulus principle and the Nevanlinna theory of the value distribution of meromorphic functions, a new result is obtained, and some existing results are improved and generalized. Examples show that our result is precise.
Key words: difierential equation     algebraic solution     maximum modulus principle    
复微分方程组的代数解
王钥, 张庆彩    
中国人民大学信息学院, 北京 100872
摘要:本文研究了一类复微分方程组的代数解的存在问题.利用最大模原理和Nevanlinna值分布理论, 得到了一个结论, 推广和改进了一些文献的结果, 例子表明结论精确.
关键词微分方程    代数解    最大模原理    
1 Introduction and Main Results

In this paper, we assume that the reader is familiar with the standard notation and basic results of the Nevanlinna theory of meromorphic functions, for example, see [1, 2].

In 1988, Toda N considered the existence of algebroid solutions of algebraic differential equation of the form

$ (w^{\prime})^n=\frac{\sum\limits_{i=0}^{p}a_iw^i}{\sum\limits_{j=0}^{q}b_jw^j},a_pb_q\neq 0. $

He obtained the following result:

Theorem A  (see [3]) Let $w(z)$ be a nonconstant $\nu$-valued algebroid solution of the above differential equation and all $\{a_i\},\{b_j\}$ are polynomials. If $p<n+q$, then $w(z)$ is algebraic.

Since the 1990s, many authors, such as Tu Zhenhan, Xiao Xiuzhi, Song Shugang, Li Kamshun, Gao Lingyun, using the Nevanlinna theory of the value distribution of meromorphic functions, studied the problem of the existence and the growth of solutions of systems of complex differential equations and obtained many new and interesting results, for example, see [4--11].

The purpose of this paper is to study the system of complex algebraic differential equations on the base of Toda N's paper with the aid of maximum modulus principle and Nevanlinna theory.

We will study the existence of algebraic solutions of system of complex differential equations of the following form

$ \left\{\begin{array}{l} (w_1^{\prime})^{n_1}=\frac{P_1(z,w_1,w_2)}{Q_1(z,w_1)},\\ (w_2^{\prime})^{n_2}=\frac{P_2(z,w_1,w_2)}{Q_2(z,w_2)}, \end{array}\right. $ (1.1)

where

$\begin{eqnarray*} &&P_1(z,w_1,w_2)=\sum\limits_{i=0}^{p_{11}}\sum\limits_{j=0}^{p_{12}}a_{ij}w_1^iw_2^j, Q_1(z,w_1)=\sum\limits_{i=0}^{q_1}b_{i}w_1^i,\\ &&P_2(z,w_1,w_2)=\sum\limits_{i=0}^{p_{21}}\sum\limits_{j=0}^{p_{22}}c_{ij}w_1^iw_2^j, Q_2(z,w_2)=\sum\limits_{i=0}^{q_2}d_{i}w_2^i, \end{eqnarray*}$

$\{a_{ij}\},\{b_{i}\},\{c_{ij}\},\{d_{i}\}$ are entire functions, $n_1,n_2$ are positive integer numbers, $p_{11},p_{12},q_{1},p_{21}$, $p_{22},q_{2} $ are non-negative integer numbers.

We will prove

Theorem 1.1 Let $(w_1(z),w_2(z))$ be a nonconstant transcendental meromorphic solution of system (1.1) and all $\{a_{ij}\},\{b_{i}\},\{c_{ij}\},\{d_{i}\}$ are polynomials. If there exists a positive constant $K$ such that $\min\{n_1,n_1+q_1-p_{11}\}\min\{n_2,n_2+q_2-p_{22}\}>Kp_{12}p_{21}$, and one of the following conditions is satisfied

(ⅰ) $n_1+q_1 > p_{11}+ p_{12},\,n_2+q_2> p_{21}+ p_{22}, $

(ⅱ) $ n_1+q_1 > p_{11}+ p_{21},\,n_2+q_2> p_{22}+ p_{12}, $

then $(w_1(z),w_2(z))$ is algebraic.

In this paper, we denote by $E$ is a subset of $[0,\infty)$ for which $m(E)<\infty$ and by $K$ is a positive constant, where $m(E)$ denotes the linear measure of $E$. $E$ or $K$ does not always mean the same one when they appear in the following.

2 Some Lemmas

Lemma 2.1 (see [2]) Let $w(z)$ be a transcendental meromorphic function such that $w(z),w^{\prime}(z)$ has only finite number of poles. Then, for some constants $C_i>0,i=1,2$, it holds

$ M(r,w)\leq C_1+C_2rM(r,w^{\prime}), $

where $M(r,w)=\max\limits_{|z|=r}\{|w(z)|\}$.

Lemma 2.2  (see [2]) Let $w(z)$ be a transcendental meromorphic function such that $w(z)$ has only finite number of poles. Then, for $\alpha >0$, it holds

$M(r,w^{\prime})\leq 2^{\frac{1}{\alpha}}[M(r,w)]^{\alpha +1},(r\not\in E).$
3 Proof of Theorem 1.1

Let $S$ be the set of zeros of $\{a_{ij}\},\{b_{i}\},\{c_{ij}\},\{d_{i}\}$.

First, we will prove the poles of $w_1$ and $w_2$ are contained in $S$.

By the conditions of Theorem 1.1, if $ z_0$ is a pole of $ w_1$ or $w_2 $, $z_0\not\in S$, then $z_0$ is also a pole of $w_2 $ or $ w_1$. Suppose that $z_0$ is a pole of $w_1$ of order $\tau_1$, a pole of $w_2$ of order $\tau_2$, but $z_0\not\in S$. Then it follows from (1.1), we have

$ \left\{\begin{array}{l} n_1(\tau_1+1)\leq p_{11}\tau_1+ p_{12}\tau_2-q_1\tau_1,\\ n_2(\tau_2+1)\leq p_{21}\tau_1+ p_{22}\tau_2-q_2\tau_2, \end{array}\right. $

that is

$ \left\{\begin{array}{l} n_1(\tau_1+1)\leq (p_{11}-q_1)\tau_1+ p_{12}\tau_2,\\ n_2(\tau_2+1)\leq p_{21}\tau_1+ ( p_{22}-q_2)\tau_2. \end{array}\right. $

Case (ⅰ): Noting that $p_{11}+p_{12}<n_1+q_1,\,\,p_{21}+p_{22}<n_2+q_2$, we get

$ \left\{\begin{array}{l} n_1(\tau_1+1)<(n_1-p_{12})\tau_1+p_{12}\tau_2,\\ n_2(\tau_2+1)<p_{21}\tau_1+(n_2-p_{21})\tau_2. \end{array}\right. $

That is

$n_1<p_{12}(\tau_2-\tau_1), n_2<p_{21}(\tau_1-\tau_2).$

This is a contradiction because $p_{12}\geq 0,p_{21}\geq 0$.

Case (ⅱ): Noting that $p_{11}+p_{21}<n_1+q_1,\,\,p_{12}+p_{22}<n_2+q_2$, we obtain

$ n_1(\tau_1+1)+n_2(\tau_2+1)\leq ( p_{11} + p_{21} -q_{1})\tau_1 + (p_{22}+p_{12}-q_{2})\tau_2< n_1\tau_1+ n_2\tau_2. $

Then, we have $ n_1+n_2<0. $ This is a contradiction.

Combining Case (ⅰ) and Case (ⅱ), we obtain the poles of $w_1$ and $w_2$ are contained in $S$, that is

$\begin{eqnarray} N(r,w_1)\leq K_1[ N(r,\frac{1}{a_{ij}})+ N(r,\frac{1}{b_{i}}) + N(r,\frac{1}{c_{ij}}) + N(r,\frac{1}{d_{i}}) ], \end{eqnarray}$ (3.1)
$\begin{eqnarray} N(r,w_2)\leq K_2[ N(r,\frac{1}{a_{ij}})+ N(r,\frac{1}{b_{i}}) + N(r,\frac{1}{c_{ij}}) + N(r,\frac{1}{d_{i}}) ], \end{eqnarray}$ (3.2)

where $K_1, K_2$ are positive constants.

Next, we will estimate $ m(r,w_1), m(r,w_2).$

We rewrite the system of complex differential equation (1.1) as follows:

$ \left\{\begin{array}{l} b_{q_1}^{n_1}(\overline{Q_1}(w_1)w_1^{\prime})^{n_1}=P_1(z,w_1,w_2)Q_1(z,w_1)^{n_1-1},\\ d_{q_2}^{n_2}(\overline{Q_2}(w_2)w_2^{\prime})^{n_2}=P_2(z,w_1,w_2)Q_2(z,w_2)^{n_2-1}, \end{array}\right. $ (3.3)

where $\overline{Q_1}(w_1)=\displaystyle \frac{Q_1(z,w_1) }{ b_{q_1} },\overline{Q_2}(w_2) = \displaystyle\frac{ Q_2(z,w_2) }{ d_{q_2} }.$

Let

$\begin{eqnarray*} &&U_1(z)=\frac{w_1^{q_1+1}}{q_1+1}+ \sum\limits_{i=0}^{q_1-1}\frac{b_{i}}{b_{q_1}}\frac{w_1^{i+1}}{i+1},\,\, V_1(z)=\sum\limits_{i=0}^{q_1-1}(\frac{b_{i}}{b_{q_1}})^{\prime}\frac{w_1^{i+1}}{i+1},\\ &&U_2(z)=\frac{w_2^{q_2+1}}{q_2+1}+ \sum\limits_{i=0}^{q_2-1}\frac{d_{i}}{d_{q_2}}\frac{w_2^{i+1}}{i+1},\,\, V_2(z)=\sum\limits_{i=0}^{q_2-1}(\frac{d_{i}}{d_{q_2}})^{\prime}\frac{w_2^{i+1}}{i+1}. \end{eqnarray*}$

Then system (3.3) becomes

$ \left\{\begin{array}{l} b_{q_1}^{n_1}(U_1^{\prime}(z)-V_1(z))^{n_1}=P_1(z,w_1,w_2)Q_1(z,w_1)^{n_1-1},\\ d_{q_2}^{n_2}(U_2^{\prime}(z)-V_2(z))^{n_2}=P_2(z,w_1,w_2)Q_2(z,w_2)^{n_2-1}. \end{array}\right. $ (3.4)

We can easily prove the poles of $U_i(z)$, $U_i^{\prime}(z)(i=1,2)$ are contained in $S$.

Because $S$ is a finite set, it follows from Lemma 2.1 that

$\begin{eqnarray*} &&M(r,U_1)\leq C_1+C_2rM(r,U_1^{\prime}),r\not\in E,\\ &&M(r,U_2)\leq C_3+C_4rM(r,U_2^{\prime}),r\not\in E. \end{eqnarray*}$

According to the definitions of $U_i,i=1,2$, we obtain

$\begin{eqnarray} M(r,U_1)\geq \frac{M(r,w_1)^{q_1+1}}{q_1+1}-\frac{K_3M(r,w_1)^{q_1}\{\sum\limits_{i=0}^{q_1-1}M(r,b_{i})\}} {r^{\overline{d_1}}}, \end{eqnarray}$ (E3.5)
$\begin{eqnarray} M(r,U_2)\geq \frac{M(r,w_2)^{q_2+1}}{q_2+1}-\frac{K_4M(r,w_2)^{q_2}\{\sum\limits_{i=0}^{q_2-1}M(r,d_{i})\}} {r^{\overline{d_2}}}, \end{eqnarray}$ (3.6)
$\begin{eqnarray} (\frac{b_{i}}{b_{q_1}})^{\prime}=\frac{b_{i}^{\prime}b_{q_1}-b_{q_1}^{\prime}b_{i}}{b_{q_1}^2}, (\frac{d_{i}}{d_{q_2}})^{\prime}=\frac{d_{i}^{\prime}d_{q_2}-d_{q_2}^{\prime}d_{i}}\nonumber {d_{q_2}^2}, \end{eqnarray}$

where $\overline{d_1}, \overline{d_2}$ are respectively the degrees of polynomials $b_{q_1}, d_{q_2}$ and $K_3, K_4$ are positive constants.

From Lemma 2.2, we obtain

$\begin{eqnarray*} &&M(r,(\frac{b_{i}}{b_{q_1}})^{\prime})\leq K_5 \frac{r[M(r,b_{i})]^2+M(r,b_{i})}{r^{\overline{d_1}+1}},r\not\in E,\\ &&M(r,(\frac{d_{i}}{d_{q_2}})^{\prime})\leq K_6 \frac{r[M(r,d_{i})]^2+M(r,d_{i})}{r^{\overline{d_2}+1}},r\not\in E, \end{eqnarray*}$

where $K_5, K_6$ are positive constants.

Therefore

$\begin{eqnarray} M(r,V_1)\leq \frac{K_7M(r,w_1)^{q_1}\sum\limits_{i=0}^{q_1-1}\{r[M(r,b_{i})]^2+M(r,b_{i})\}} {r^{\overline{d_1}+1}}, \end{eqnarray}$ (3.7)
$\begin{eqnarray} M(r,V_2)\leq \frac{K_{8}M(r,w_2)^{q_2}\sum\limits_{i=0}^{q_2-1}\{r[M(r,d_{i})]^2+M(r,d_{i})\}} {r^{\overline{d_2}+1}}, \end{eqnarray}$ (3.8)

where $K_7, K_8$ are positive constants.

By (3.5) and (3.7), we have

$\begin{eqnarray} &&M(r,U_1^{\prime})-M(r,V_1)\geq \displaystyle \displaystyle \frac{M(r,U_1)-C_1}{C_2r}-M(r,V_1)\nonumber\\ \end{eqnarray}$
$\begin{eqnarray} &\geq & \displaystyle \frac{K_{9}M(r,w_1)^{q_1+1}}{r}-\frac{K_{10}M(r,w_1)^{q_1}\sum\limits_{i=0}^{q_1-1} \{r[M(r,b_{i})]^2+M(r,b_{i})\}}{r^{\overline{d_1}+1}},\\ &&M(r,U_2^{\prime})-M(r,V_2)\geq \displaystyle \frac{M(r,U_2)-C_3}{C_4r}-M(r,V_2)\nonumber\\ \end{eqnarray}$ (3.9)
$\begin{eqnarray} &\geq & \displaystyle \frac{K_{11}M(r,w_2)^{q_2+1}}{r}-\frac{K_{12}M(r,w_2)^{q_2}\sum\limits_{i=0}^{q_2-1} \{r[M(r,d_{i})]^2+M(r,d_{i})\}}{r^{\overline{d_2}+1}}, \end{eqnarray}$ (3.10)

where $K_9, K_{10}$, $K_{11}, K_{12}$ are positive constants.

Let $z_r$ be a point such that $M(r,U^{\prime}(z))=|U^{\prime}(z_r)|,|z_r|=r,(r\not\in E)$. Then

$\begin{eqnarray} (M(r,U_1^{\prime})-M(r,V_1))^{n_1}&\leq& |U_1^{\prime}(z_r)-V_1(z_r)|^{n_1}\nonumber\\ &\leq& M(r,\frac{P_1(z,w_1,w_2)Q_1(z,w_1)^{n_1-1}}{b_{q_1}^{n_1}}), \end{eqnarray}$ (3.11)
$\begin{eqnarray} (M(r,U_2^{\prime})-M(r,V_2))^{n_2}&\leq& |U_2^{\prime}(z_r)-V_2(z_r)|^{n_2}\nonumber\\ &\leq& M(r,\frac{P_2(z,w_1,w_2)Q_2(z,w_2)^{n_2-1}}{d_{q_2}^{n_2}}). \end{eqnarray}$ (3.12)

Since

$\begin{eqnarray} && \displaystyle M(r,\frac{P_1(z,w_1,w_2)Q_1(z,w_1)^{n_1-1}}{b_{q_1}^{n_1}})\nonumber\\ &\leq& \displaystyle \frac{K_{13}M(r,w_2)^{p_{12}}M(r,w_1)^{p_{11}+q_1(n_1-1)} \{\sum\limits_{i=0}^{p_{11}}\sum\limits_{j=0}^{p_{12}}M(r,a_{ij})\}\{\sum\limits_{i=0}^{q_1} M(r,b_{i})\}^{n_1-1}}{r^{n_1\overline{d_1}}}, \end{eqnarray}$ (3.13)
$\begin{eqnarray} && \displaystyle M(r,\frac{P_2(z,w_1,w_2)Q_2(z,w_2)^{n_2-1}}{d_{q_2}^{n_2}})\nonumber\\ &\leq& \displaystyle \frac{K_{14}M(r,w_1)^{p_{21}}M(r,w_2)^{p_{22}+q_2(n_2-1)} \{\sum\limits_{i=0}^{p_{21}}\sum\limits_{j=0}^{p_{22}}M(r,c_{ij})\}\{\sum\limits_{i=0}^{q_2} M(r,d_{i})\}^{n_2-1}}{r^{n_2\overline{d_2}}}, \end{eqnarray}$ (3.14)

where $K_{13}, K_{14}$ are positive constants.

Combining (3.9)-(3.14), we obtain

$ \left\{\begin{array}{l} \frac{M(r,w_1)^{q_1+1}}{r}\leq \frac{K_{15}M(r,w_2)^{p_{12}/n_1}M(r,w_1)^{(p_{11}+q_1(n_1-1))/n_1} \{\sum\limits_{i=0}^{p_{11}} \sum\limits_{j=0}^{p_{12}} M(r,a_{ij})\}^{1/n_1} \{\sum\limits_{i=0}^{q_1}M(r,b_{i})\}^{(n_1-1)/n_1}} {r^{\overline{d_1}}}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \frac{K_{16}M(r,w_1)^{q_1}\sum\limits_{i=0}^{q_1-1}\{{r[M(r,b_{i})]^2+M(r,b_{i})}\}} {r^{\overline{d_1}}+1},r\not\in E,\\ \frac{M(r,w_2)^{q_2+1}}{r}\leq \frac{K_{17}M(r,w_1)^{p_{21}/n_2}M(r,w_2)^{(p_{22}+q_2(n_2-1))/n_2} \{\sum\limits_{i=0}^{p_{21}}\sum\limits_{j=0}^{p_{22}} M(r,c_{ij})\}^{1/n_2} \{\sum\limits_{i=0}^{q_2}M(r,d_{i})\}^{(n_2-1)/n_2}} {r^{\overline{d_2}}}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\frac{K_{18}M(r,w_2)^{q_2}\sum\limits_{i=0}^{q_2-1}\{r[M(r,d_{i})]^2+M(r,d_{i})\}} {r^{\overline{d_2}+1}},r\not\in E, \end{array}\right. $

where $K_{15}, K_{16},K_{17}, K_{18}$ are positive constants.

Further, we get

$ \left\{\begin{array}{l} M(r,w_1)^{\min\{1,\frac{n_1+q_1-p_{11}}{n_1}\}}\leq \frac{K_{19}[M(r,w_2)^{p_{12}/n_1}\{\sum\limits_{i=0}^{p_{11}} \sum\limits_{j=0}^{p_{12}} M(r,a_{ij})\}^{1/n_1} \{\sum\limits_{i=0}^{q_1}M(r,b_{i})\}^{(n_1-1)/n_1}} {r^{\overline{d_1}}}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\frac{\sum\limits_{i=0}^{q_1-1}\{ r[M(r,b_{i})]^2+M(r,b_{i})\}]} {r^{\overline{d_1}}},\\ M(r,w_2)^{\min\{1,\frac{n_2+q_2-p_{22}}{n_2}\}}\leq \frac{K_{20}[M(r,w_1)^{p_{21}/n_2}\{\sum\limits_{i=0}^{p_{21}} \sum\limits_{j=0}^{p_{22}} M(r,c_{ij})\}^{1/n_2} \{\sum\limits_{i=0}^{q_2}M(r,d_{i})\}^{(n_2-1)/n_2}} {r^{\overline{d_2}}}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\frac{\sum\limits_{i=0}^{q_2-1}\{r[M(r,d_{i})]^2+M(r,d_{i})\}]} {r^{\overline{d_2}}}, \end{array}\right. $

where $K_{19}, K_{20}$ are positive constants.

By calculating $\log^+$ of the both sides of the above inequalities, we have

$ \left\{\begin{array}{l} \min\{n_1,n_1+q_1-p_{11}\}\log^+ M(r,w_1)\leq K_{19}p_{12}\log^+M(r,w_2)+S_1(r),\\ \min\{n_2,n_2+q_2-p_{22}\}\log^+ M(r,w_2)\leq K_{20}p_{21}\log^+M(r,w_1)+S_2(r), \end{array}\right. $

where

$\begin{eqnarray*} &&S_1(r)=K_{19}[\sum\limits_{i=0}^{p_{11}}\sum\limits_{j=0}^{p_{12}} \log^+M(r,a_{ij})+\sum\limits_{i=0}^{q_1}\log^+M(r,b_{i})+O(\log r)],\\ &&S_2(r)=K_{20}[\sum\limits_{i=0}^{p_{21}} \sum\limits_{j=0}^{p_{22}} \log^+M(r,c_{ij})+\sum\limits_{i=0}^{q_2}\log^+M(r,d_{i})+O(\log r)]. \end{eqnarray*}$

Further, we get

$ $\begin{array}{rl} (\min\{n_1,n_1+q_1-p_{11}\}\min\{n_2,n_2+q_2-p_{22}\}-K_{19}K_{20}p_{12}p_{21})\log^+ M(r,w_i) \leq S(r),r\not\in E, \end{array}$ $

where $i=1,2$,

$\begin{eqnarray*} S(r)&=&K_{21}[\sum\limits_{i=0}^{p_{11}}\sum\limits_{j=0}^{p_{12}} \log^+M(r,a_{ij})+\sum\limits_{i=0}^{q_1}\log^+M(r,b_{i})\\ &&+\sum\limits_{i=0}^{p_{21}}\sum\limits_{j=0}^{p_{22}} \log^+M(r,c_{ij})+\sum\limits_{i=0}^{q_2}\log^+M(r,d_{i})]+O(\log r), \end{eqnarray*}$

where $K_{21}$ is a positive constant.

Since there exists a positive constant $K$ such that $\min\{n_1,n_1+q_1-p_{11}\}\min\{n_2,n_2+q_2-p_{22}\}>Kp_{12}p_{21}$, then we obtain

$\begin{eqnarray} &&m(r,w_1)\leq S(r), \end{eqnarray}$ (3.15)
$\begin{eqnarray} &&m(r,w_2)\leq S(r). \end{eqnarray}$ (3.16)

Combining the inequalities (3.1), (3.2), (3.15) and (3.16), we have

$T(r,w_i)=O(\log r)(r\not\in E), i=1,2,$

which shows that $(w_1(z),w_2(z))$ is an algebraic solution of (1.1).

This completes the proof of Theorem 1.1.

4 Some Examples

Example 4.1 and example 4.2 show that the conditions in Theorem 1.1 are sharp. Example 4.3 and example 4.4 show that Theorem 1.1 holds.

Example 4.1  $(w_1(z),w_2(z))=(e^{2z},2e^{z})$ is a nonconstant transcendental meromorphic solution of the following system of differential equations

$ \left\{\begin{array}{l} (w_1^{\prime})^3= \displaystyle \frac {8w_1^3 + w_1w_2^2 +2 w_1^3w_2^2 - 4 w_1^2 } {w_1+1},\\ (w_2^{\prime})^3= \displaystyle \frac {4w_1^2 -3 w_1w_2-4 w_1^2w_2 - w_1w_2^2 - \frac{1}{4} w_2^3 +5w_1w_2^3 } {w_2^2-1}. \end{array}\right. $

It is easy to know that

$ n_1=3,q_1=1,p_{11}=3,p_{12}=2; n_2=3,q_2=2,p_{21}=2,p_{22}=3. $

Thus

$n_1+q_1=4<5 =p_{11} +p_{12}, n_2+q_2=5 =p_{21} +p_{22},$

or

$n_1+q_1=4<5 =p_{11} +p_{21}, n_2+q_2=5 =p_{12} +p_{22}.$

Example 4.2 $(w_1(z),w_2(z))=( \sin z, \cos^2 z)$ is a nonconstant transcendental meromorphic solution of the following system of differential equations

$ \left\{\begin{array}{l} (w_1^{\prime})^2= \displaystyle \frac {(w_2^2)} {1-w_1^2},\\ (w_2^{\prime})^2= \displaystyle \frac {5w_1^2w_2 + 4w_1^2w_2^2 -w_2 + w_2^2 } {w_2+1}. \end{array}\right. $

In this case,

$ n_1=2,q_1=2,p_{11}=0,p_{12}=2; n_2=2,q_2=1,p_{21}=2,p_{22}=2. $

Thus

$n_1+q_1=4>2 =p_{11} +p_{12}, n_2+q_2=3<4 =p_{21} +p_{22},$

or

$n_1+q_1=4>2 =p_{11} +p_{21}, n_2+q_2=3<4=p_{12} +p_{22}.$

Example 4.3 $(w_1(z),w_2(z))=(z^2, 2 z)$ is a nonconstant algebraic solution of the following system of differential equations

$ \left\{\begin{array}{l} (w_1^{\prime})^2= \displaystyle \frac { 6z w_1+2z w_2 + 2z^2 w_1^2 -3w_1w_2 -3zw_1^2 w_2 } { 1-w_1^2},\\ (w_2^{\prime})^3= \displaystyle \frac { z^2-2z+8+ 3 w_1^2w_2^2 +(9z-7 )w_2 -3z^3w_1w_2 +7zw_1^2w_2 +13w_1 -5z^2 w_1w_2^2 } { w_2^2- w_2+1}. \end{array}\right. $

Clearly, we get

$ n_1=2,q_1=2,p_{11}=2,p_{12}=1; n_2=3,q_2=2,p_{21}=2,p_{22}=2. $

In this case, Case (ⅰ) holds, that is

$n_1+q_1=4>3 =p_{11} +p_{12}, n_2+q_2=5>4 =p_{21} +p_{22},$

but Case (ⅱ) does not hold, that is

$n_1+q_1=4 =p_{11} +p_{21}, n_2+q_2=5>3=p_{12} +p_{22}.$

There exists a positive constant $K=2$ such that

$\min\{n_1,n_1+q_1-p_{11}\}\min\{n_2,n_2+q_2-p_{22}\}= 2 \times 3=6 >4= Kp_{12}p_{21}.$

Example 4.4 $(w_1(z),w_2(z))=( \displaystyle \frac{1}{z}, 3 z)$ is a nonconstant algebraic solution of the following system of differential equations

$ \left\{\begin{array}{l} (w_1^{\prime})^3= \displaystyle \frac { 2 w_2^3-11z^2w_1^2 +z w_1^2w_2 - z^2 w_1^2w_2^3 +w_1^2w_2^2-2zw_2^2-3z^2 w_2 -2zw_1 } { z^2w_1^2 - 2zw_1 +z^6+1 },\\ (w_2^{\prime})^2= \displaystyle \frac { ( 4z^2+1) w_1^2 w_2 - 5z^2w_1^2 -w_1w_2-2w_2 +(5z^2+7z-3 )w_1- 2z +1 } {\displaystyle \frac{1}{9}w_2^3 -zw_2^2+2z^2w_2 +z }. \end{array}\right. $

Easily, we obtain

$ n_1=3,q_1=2,p_{11}=2,p_{12}=3; n_2=2,q_2=3,p_{21}=2,p_{22}=1. $

In this case, Case (ⅰ) does not hold, that is

$n_1+q_1=5 =p_{11} +p_{12}, n_2+q_2=5>3 =p_{21} +p_{22},$

but Case (ⅱ) holds, that is

$n_1+q_1=5>4 =p_{11} +p_{21}, n_2+q_2=5>4=p_{12} +p_{22}.$

There exists a positive constant $K=1$ such that

$\min\{n_1,n_1+q_1-p_{11}\}\min\{n_2,n_2+q_2-p_{22}\}= 3\times 4=12 >6 = Kp_{12}p_{21}.$
References
[1] Yi H X, Yang C C. Theory of the uniqueness of meromorphic functions (in Chinese)[M]. Beijing: Science Press, 1995.
[2] He Yuzan, Xiao Xiuzhi. Algebroid functions and ordinary difierential equations[M]. Beijing: SciencePress, 1988.
[3] Toda N. On algebroid solutions of some binomial difierential equations in the complex plane[J]. Proc. Japan. Acad., Ser.A, 1988, 64(3): 61–64. DOI:10.3792/pjaa.64.61
[4] Tu Zhenhan, Xiao Xiuzhi. On the meromorphic solutions of systems of higher-order algebraic differential equations[J]. Complex Variables, 1990, 15(3): 197–209. DOI:10.1080/17476939008814451
[5] Song Shugang. Meromorphic solutions of difierential equations in the complex domain[J]. Acta Math.Sinica, 1991, 34(6): 779–784.
[6] Li Kamshun, Chan Waileung. Meromorphic solutions of higher order systems of algebraic difierential equations[J]. Math. Scand., 1992, 71(1): 105–121.
[7] Gao Lingyun. On admissible solutions of two types of systems of difierential equations in the complex plane[J]. Acta Math. Sinica, 2000, 43(1): 149–156.
[8] Gao Lingyun. On the growth of components of meromorphic solutions of systems of complex difierential equations[J]. Acta Math. Appl. Sinica, 2005, 21(3): 499–504. DOI:10.1007/s10255-005-0258-3
[9] Gao Lingyun. The growth of solutions of systems of complex nonlinear algebraic difierential equations[J]. Acta Math. Scientia, 2010, 30(3): 932–938. DOI:10.1016/S0252-9602(10)60090-2
[10] Gao Lingyun. Expression of meromorphic solutions of systems of algebraic difierential equations with exponential coefients[J]. Acta Math. Scientia, 2011, 31B(2): 541–548.
[11] Gao Lingyun. On meromorphic solutions of a type of system of composite functional equations[J]. Acta Math. Scientia, 2012, 32B(2): 800–806.