1 Introduction
Let $\Sigma_{p}$ denote the class of function $f$ of the form:
$\begin{equation}\label{1.1}
f(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}a_{k}z^{k}, p\in
\mathbb{N}=\{1,2,3,\cdots\},
\end{equation}$ |
(1.1) |
which are analytic in the punctured open unit disk
$\mathbb{U}^{*}:=\{z:z\in \mathbb{C}\ {\rm and}\ 0<|z|<1 \}=:\mathbb{U}\setminus \{0\}
. $ |
A function $f\in \Sigma_{p}$ is said to be in the class $
\mathcal{MS}_{p}^{*}(\alpha)$ of meromorphic $p$-valent starlike function of order $\alpha$ if it satisfies the inequality $\Re\left(\frac{zf'(z)}{f(z)}\right)<-\alpha(z\in\mathbb{U};\
0\leqq\alpha<p). $
Let $\mathcal{P}$ denote the class of functions $p$ given by
$\begin{equation}\label{1.2}
p(z)=1+\sum\limits^{\infty}_{k=1}p_{k}z^{k}(z\in \mathbb{U}),
\end{equation}$ |
(1.2) |
which are analytic in $\mathbb{U}$ and satisfy the condition $\Re\big(p(z)\big) >0(z\in \mathbb{U}).$
Given two functions $f,\ g\in\Sigma_{p}$, where $f$ is given by (1.1) and $g$ is given by
$g(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}b_{k}z^{k},$ |
the Hadamard product $f*g$ is defined by
$(f*g)(z):=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}a_{k}b_{k}z^{k}=:(g*f)(z).$ |
A functions $f\in \Sigma_{p}$ is said to be in the class $\mathcal{H}_{p}(\beta,\lambda)$ if it satisfies the condition
$\begin{equation}\label{1.3}
\Re\left(\frac{zf'(z)}{f(z)}+\beta\frac{z^2f''(z)}{f(z)}\right)<
\beta\lambda
\left(\lambda+\frac{1}{2}\right)+\frac{1}{2}p\beta-\lambda\left(z\in\mathbb{U}\right),
\end{equation}$ |
(1.3) |
where (and throughout this paper unless otherwise mentioned) the parameters $\beta$ and $\lambda$ are constrained as follows:
$\begin{equation}\label{1.4}
\beta\geqq 0\qquad {\rm and} \qquad p-\frac{1}{2}\leqq \lambda <p.
\end{equation}$ |
(1.4) |
Clearly, we have $\mathcal{H}_{p}(0,\lambda)=\mathcal{MS}_{p}^{*}(\lambda).$
2 Preliminary Results
In order to prove our main results, we need the following lemmas.
Lemma 2.1 (see [2]) If the function $p\in \mathcal{P}$ is given by (1.2), then $|p_{k}|\leqq 2(k\in \mathbb{N}).$
The following lemma shows that the class $\mathcal{H}_{p}(\beta,\lambda)$ is a subclass of the class $\mathcal{MS}_{p}^{*}(\lambda)$ of meromorphic $p$-valent starlike functions of order $\lambda.$
Lemma 2.2 (see [1]) If $f\in
\mathcal{H}_{p}(\beta,\lambda)$, then $f\in
\mathcal{MS}_{p}^{*}(\lambda)$.
Lemma 2.3 Let $\beta>0$ and $p-\beta p(p+1)-\gamma>0$. Suppose also that the sequence $\{A_{k}\}^{\infty}_{k=1}$ is defined by
$\begin{equation}\label{2.1}
A_{1}=\frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1}
,\end{equation}$ |
(2.1) |
and
$\begin{equation}\label{2.1111}A_{k+1}=\frac{2[p-\beta
p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta
k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right)\qquad(k\in
\mathbb{N}).\end{equation}$ |
(2.2) |
Then
$\begin{equation}\label{2.2}
A_{k}= \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta
p(p+1)+1}\prod\limits^{k-1}_{j=1}\frac{3p-3\beta p(p+1)-2\gamma+(\beta
j+1-\beta)j}{p-\beta p(p+1)+(\beta j+1)(j+1)}
\qquad(k\in \mathbb{N}\setminus\{1\}).
\end{equation}$ |
(2.3) |
Proof By virtue of (2.1), we easily get
$\begin{equation}\label{2.3}
[p-\beta p(p+1)+ (\beta k+1)(k+1)]A_{k+1}=2(p-\beta p(p+1)-\gamma)\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right),
\end{equation}$ |
(2.4) |
and
$\begin{equation}\label{2.4}
[p-\beta p(p+1)+ (\beta k+1-\beta)k]A_{k}=2(p-\beta p(p+1)-\gamma)\left(1+\sum\limits^{k-1}_{l=1}|A_{l}|\right).
\end{equation}$ |
(2.5) |
Combining (2.4) and (2.5), we obtain
$\begin{equation}\label{2.5}
\frac{A_{k+1}}{A_{k}}= \frac{3p-3\beta p(p+1)-2\gamma+(\beta k+1-\beta)k}{p-\beta p(p+1)+(\beta k+1)(k+1)}.
\end{equation}$ |
(2.6) |
Thus, for $k\geqq 2$, we deduce from (2.6) that
$\begin{align*}\begin{split}A_{k}&=\frac{A_{k}}{A_{k-1}}\cdots
\frac{A_{3}}{A_{2}}\cdot\frac{A_{2}}{A_{1}}\cdot A_{1}
\\&=\frac{2(p-\beta p(p+1)-\gamma)}{p-\beta
p(p+1)+1}\prod^{k-1}_{j=1}\frac{3p-3\beta p(p+1)-2\gamma+(\beta
j+1-\beta)j}{p-\beta p(p+1)+(\beta
j+1)(j+1)}.\end{split}\end{align*}$ |
3 Properties of the Function Class $\mathcal{H}_{p}(\beta,\lambda)$
Theorem 3.1 Let
$\begin{equation}\label{3.1}
p-\beta p(p+1)+\beta\lambda\left(\lambda+\frac{1}{2}\right)+ \frac{1}{2}p\beta-\lambda>0.
\end{equation}$ |
(3.1) |
Suppose also that $f\in \Sigma_{p}$ is given by (1.1). If
$\begin{equation}\label{3.2}
\sum\limits^{\infty}_{k=1}[k+\beta k(k-1)+\gamma]|a_{k}|\leqq p-\beta
p(p+1)-\gamma,
\end{equation}$ |
(3.2) |
where (and throughout this paper unless otherwise mentioned) the parameter $\gamma$ is constrained as follows:
$\begin{equation}\label{3.3}
\gamma:=\lambda-\beta\lambda\left(\lambda+\frac{1}{2}\right)-\frac{1}{2}p\beta,
\end{equation}$ |
(3.3) |
then $f\in \mathcal{H}_{p}(\beta,\lambda)$.
Proof To prove $f\in \mathcal{H}_{p}(\beta,\lambda)$, it suffices to show that
$\begin{equation}\label{3.4}
\left| \frac{\frac{zf^{'}(z)}{f(z)}+\beta\frac{z^{2}f^{''}(z)}{f(z)} +1}{\frac{zf^{'}(z)}{f(z)}+\beta\frac{z^{2}f^{''}(z)}{f(z)} +2\gamma-1}\right|<1\qquad(z\in \mathbb{U}).
\end{equation}$ |
(3.4) |
Combining (3.1), (3.2) and (3.3), we know that
$\begin{align}\label{3.5}& p-\beta p(p+1)-2\gamma+1- \sum\limits^{\infty}_{k=1}[k+\beta
k(k-1)+2\gamma-1]|a_{k}|\\\notag \geqq &1-p+\beta p(p+1)+
\sum\limits^{\infty}_{k=1}[k+1+\beta k(k-1)]|a_{k}|>0.\end{align}$ |
(3.5) |
Now, by the maximum modulus principle, we deduce from (1.1) and (3.5) that
$\begin{align*}
&\left| \frac{\frac{zf^{'}(z)}{f(z)}+\beta\frac{z^{2}f^{''}(z)}{f(z)} +1}{\frac{zf^{'}(z)}{f(z)}+\beta\frac{z^{2}f^{''}(z)}{f(z)}+ 2\gamma-1}\right|
\\ =&\left| \frac{1-p+\beta p(p+1)+ \sum^{\infty}_{k=1}[k+1+\beta k(k-1)]a_{k}z^{k+p}}{ -p+\beta p(p+1)+2\gamma-1+ \sum^{\infty}_{k=1}[k+\beta k(k-1)+2\gamma-1]a_{k}z^{k+p}} \right|\\
<&\frac{1-p+\beta p(p+1)+ \sum^{\infty}_{k=1}[k+1+\beta k(k-1)]|a_{k}|}{ p-\beta p(p+1)-2\gamma+1- \sum^{\infty}_{k=1}[k+\beta k(k-1)+2\gamma-1]|a_{k}|}\\
\leqq &1.
\end{align*}$ |
Theorem 3.2 Let $\gamma$ be defined by (3.3). If $f\in \mathcal{H}_{p}(\beta,\lambda)$ with $0<\beta<\frac{p-\lambda}{p(p+1)}$, then
$|a_{1}|\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1},$ |
and
$|a_{k}|\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1}\prod\limits^{k-1}_{j=1}\frac{3p-3\beta p(p+1)-2\gamma+(\beta j+1-\beta)j}{p-\beta p(p+1)+(\beta j+1)(j+1)}
\qquad(k\in \mathbb{N}\setminus\{1\}).$ |
Proof Suppose that
$\begin{equation}\label{3.6}
q(z):=-\frac{zf^{'}(z)}{f(z)}-\beta\frac{z^{2}f^{''}(z)}{f(z)}+\beta\lambda(\lambda+\frac{1}{2})+\frac{1}{2}p\beta-\lambda .
\end{equation}$ |
(3.6) |
Then, $q$ is analytic in $\mathbb{U}$ and $\Re\left(q(z)\right)>0(z\in\mathbb{U})$ with $q(0)=p-\beta
p(p+1)-\gamma>0.$ It follows from (3.3) and (3.6) that
$\begin{equation}\label{3.7}
q(z)f(z)=-zf^{'}(z)-\beta z^{2}f^{''}(z)-\gamma f(z).
\end{equation}$ |
(3.7) |
By noting that
$h(z)=\frac{q(z)}{p-\beta p(p+1)-\gamma}\in \mathcal{P},$ |
if we put
$q(z)=c_{0}+\sum\limits^{\infty}_{k=1}c_{k}z^{k}\qquad (c_{0}=p-\beta p(p+1)-\gamma).$ |
by Lemma 2.1, we know that $|c_{k}|\leqq 2[p-\beta
p(p+1)-\gamma](k\in \mathbb{N}).$ It follows from (3.7) that
$\begin{align}\begin{split}\label{3.8}
&\left(c_{0}+\sum\limits^{\infty}_{k=1}c_{k}z^{k}\right)\left(\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}a_{k}z^{k}\right)
\\=&\left(\frac{p}{z^{p}}-\sum\limits^{\infty}_{k=1}ka_{k}z^{k}\right)-\left[\beta\frac{p(p+1)}{z^{p}}+\beta\sum\limits^{\infty}_{k=1}k(k-1)a_{k}z^{k}\right]
-\gamma\left(\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}a_{k}z^{k}\right).
\end{split}\end{align}$ |
(3.8) |
In view of (3.8), we get
$\begin{equation}\label{3.9}
c_{0}a_{1}+c_{p+1}=-a_{1}-\gamma a_{1},
\end{equation}$ |
(3.9) |
and
$\begin{equation}\label{3.10}
c_{0}a_{k+1}+c_{p+k+1}+\sum\limits^{k}_{l=1}a_{l}c_{k+1-l}=-(k+1)a_{k+1}-\beta
k(k+1)a_{k+1}-\gamma a_{k+1}.
\end{equation}$ |
(3.10) |
From (3.9), we obtain
$\begin{equation}\label{3.11}
|a_{1}|\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1},
\end{equation}$ |
(3.11) |
and
$\begin{equation}\label{3.12}
|a_{k+1}|\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right)\qquad(k\in \mathbb{N}).
\end{equation}$ |
(3.12) |
Next, we define the sequence $\{A_{k}\}^{\infty}_{k=1}$ as follows
$\begin{equation}\label{3.13}
A_{1}=\frac{2[p-\beta p(p+1)-\gamma]}{p-\beta
p(p+1)+1},\end{equation}$ |
(3.13) |
and
$\begin{equation}A_{k+1}=\frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right)\qquad(k\in \mathbb{N}).\end{equation}$ |
(3.14) |
In order to prove that
$ |a_{k}|\leqq |A_{k}|\qquad(k\in \mathbb{N}) ,$ |
we make use of the principle of mathematical induction. By noting that
$|a_{1}|\leqq | A_{1}|=\frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1}.$ |
Therefore, assuming that
$|a_{l}|\leqq | A_{l}|\qquad(l=1,2,3,\cdots,k;\ k\in \mathbb{N}).$ |
Combining (3.12) and (3.13), we get
$\begin{align*}
|a_{k+1}|&\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|a_{l}|\right)\\
& \leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right)\\
&=A_{k+1}\qquad(k\in \mathbb{N}).
\end{align*}$ |
Hence, by the principle of mathematical induction, we have
$\begin{equation}\label{3.14}
|a_{k}|\leqq | A_{k}|\qquad(k\in \mathbb{N})
\end{equation}$ |
(3.15) |
as desired.
By means of Lemma 2.3 and (3.13), we know that (2.3) holds true. Combining (3.15) and (2.3), we readily get the coefficient estimates asserted by Theorem 3.2. Assuming that $\gamma$ is given by (3.3) and that the condition (3.1) holds true, we here introduce the $\delta$-neighborhood of a function $ f\in\Sigma_{p}$ of the form (1.1) by means of the following definition:
$\begin{align}\label{3.15}
\mathcal{N}_{\delta}(f):=\left\{g\in\Sigma_{p}:
g(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}b_{k}z^{k}\ {\rm and} \
\sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta
p(p+1)-\gamma}|a_{k}-b_{k}|\leqq\delta \right\},
\end{align}$ |
(3.16) |
where $\delta\geqq0$.
Theorem 3.3 Let the condition (3.1) hold true. If $ f\in\Sigma_{p}$ satisfies the condition
$\begin{equation}\label{3.16}
\frac{f(z)+\varepsilon z^{-p}}{1+\varepsilon} \in \mathcal{H}_{p}(\beta,\lambda)\qquad(\varepsilon \in \mathbb{C};\ |\varepsilon|<\delta;\ \delta>0),
\end{equation}$ |
(3.17) |
then
$\begin{equation}\label{3.17}
\mathcal{N}_{\delta}(f)\subset \mathcal{H}_{p}(\beta,\lambda).
\end{equation}$ |
(3.18) |
Proof By noting that the condition (1.3) is equivalent to (3.4), we easily find from (3.4) that a function $g\in \mathcal{H}_{p}(\beta,\lambda)$ if and only if
$ \frac{zg^{'}(z)+\beta z^{2}g^{''}(z)+g(z)}{zg^{'}(z)+\beta z^{2}g^{''}(z)+(2\gamma-1)g(z)} \neq \sigma\qquad(z\in \mathbb{U};\ \sigma\in\mathbb{C};\ |\sigma|=1),$ |
which is equivalent to
$\begin{equation}\label{3.18}
\frac{(g*\mathfrak{h})(z)}{z^{-p}}\neq 0\qquad(z\in \mathbb{U}),
\end{equation}$ |
(3.19) |
where
$\begin{equation}\label{3.19}
\mathfrak{h}(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}c_{k}z^{k} \left(c_{k}:=\frac{k+\beta k(k-1)+1-[k+\beta k(k-1)+(2\gamma-1)]\sigma}{-p+\beta p(p+1)+1+[p-\beta p(p+1)-(2\gamma-1)]\sigma}\right).
\end{equation}$ |
(3.20) |
It follows from (3.20) that
$\begin{align*}
|c_{k}| &= \left| \frac{k+\beta k(k-1)+1-[k+\beta k(k-1)+(2\gamma-1)]\sigma}{-p+\beta p(p+1)+1+[p-\beta p(p+1)-(2\gamma-1)]\sigma}\right| \\
& \leqq \frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}\qquad(|\sigma|=1).
\end{align*}$ |
If $ f\in\Sigma_{p}$ given by (1.1) satisfies the condition (3.17), we deduce from (3.19) that
$ \frac{(f*\mathfrak{h})(z)}{z^{-p}}\neq -\varepsilon\qquad(|\varepsilon|<\delta;\ \delta>0) ,$ |
or equivalently,
$\begin{equation}\label{3.20}
|\frac{(f*\mathfrak{h})(z)}{z^{-p}}|\geqq \delta\qquad(z\in
\mathbb{U};\delta>0).
\end{equation}$ |
(3.21) |
We now suppose that
$q(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}d_{k}z^{k}\in \mathcal{N}_{\delta}(f).$ |
It follows from (3.16) that
$\begin{equation}\label{3.21}
\left|\frac{[(q-f)*\mathfrak{h}])(z)}{z^{-p}} \right|=\left|\sum\limits^{\infty}_{k=1}(d_{k}-a_{k})c_{k}z^{k+p}\right|
\leqq |z|\sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}|d_{k}-a_{k}|<\delta.
\end{equation}$ |
(3.22) |
Combining (3.21) and (3.22), we easily find that
$|\frac{(q*\mathfrak{h})(z)}{z^{-p}}|=|\frac{([f+(q-f)]*\mathfrak{h})(z)}{z^{-p}}|\geqq
|\frac{(f*\mathfrak{h})(z)}{z^{-p}}|-|\frac{[(q-f)*\mathfrak{h}](z)}{z^{-p}}|>0,$ |
which implies that
$\frac{(q*\mathfrak{h})(z)}{z^{-p}}\neq 0\qquad(z\in \mathbb{U}).$ |
Therefore, we have
$q(z)\in \mathcal{N}_{\delta}(f)\subset \mathcal{H}_{p}(\beta,\lambda).$ |
Next, we derive the partial sums of the class $\mathcal{H}_{p}(\beta,\lambda)$. For some recent investigations involving the partial sums in analytic function theory, one can refer to [3-7].
Theorem 3.4 Let $ f\in\Sigma_{p}$ be given by (1.1) and define the partial sums $f_{n}(z)$ of $f$ by
$\begin{equation}\label{3.22}
f_{n}(z)=\frac{1}{z^{p}}+\sum\limits^{n}_{k=1}a_{k}z^{k} (n\in \mathbb{N}).
\end{equation}$ |
(3.23) |
If
$\begin{equation}\label{3.23}
\sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}|a_{k}|\leqq 1,
\end{equation}$ |
(3.24) |
where $\gamma$ given by (3.3) and the condition (3.1) holds true, then
(ⅰ) $ f\in \mathcal{H}_{p}(\beta,\lambda);$
(ⅱ)
$\begin{equation}\label{3.24}
\Re\left(\frac{f(z)}{f_n(z)}\right)\geqq \frac{n+\beta
n(n+1)+\beta p(p+1)-p+1+2\gamma}{n+\beta
n(n+1)+1+\gamma}\qquad(n\in \mathbb{N};z\in \mathbb{U}),
\end{equation}$ |
(3.25) |
and
$\begin{equation}\label{3.25}
\Re\left(\frac{f_n(z)}{f(z)}\right)\geqq \frac{n+\beta
n(n+1)+\beta p(p+1)-p+2+\gamma-2\beta}{n+\beta
n(n+1)+2-2\beta}\qquad(n\in \mathbb{N};z\in \mathbb{U}).
\end{equation}$ |
(3.26) |
The bounds in (3.25) and (3.26) are sharp.
Proof First of all, we suppose that $f_{1}(z)=\frac{1}{z^{p}}.$ We know that
$\frac{f(z)+\varepsilon z^{-p}}{1+\varepsilon}= \frac{1}{z^{p}}\in \mathcal{H}_{p}(\beta,\lambda).$ |
From (3.24), we easily find that
$ \sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}|a_{k}-0|\leqq 1,$ |
which implies that $f\in N_{1}(z^{-p})$. By virtue of Theorem 3.3, we deduce that
$f\in \mathcal{N}_{1}(z^{-p})\subset \mathcal{H}_{p}(\beta,\lambda).$ |
Next, it is easy to see that
$\frac{n+1+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}>\frac{n+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}>1\qquad(n\in \mathbb{N}). $ |
Therefore, we have
$\begin{equation}\label{3.26}
\sum\limits^{n}_{k=1}|a_{k}|+\frac{n+1+\beta n(n+1)+\gamma}{p-\beta
p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_{k}|\leqq
\sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta
p(p+1)-\gamma}|a_{k}|\leqq 1.
\end{equation}$ |
(3.27) |
We now suppose that
$\begin{align}\begin{split}\label{3.27}
h_{1}(z) & =\frac{n+1+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}\left(\frac{f(z)}{f_{n}(z)}-\frac{n+\beta n(n+1)+\beta p(p+1)-p+1+2\gamma}{n+1+\beta n(n+1)+\gamma}\right)
\\& =1+\frac{\frac{n+1+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}a_{k}z^{k+p}}{1+\sum\limits^{n}_{k=1}a_{k}z^{k+p}}.
\end{split}\end{align}$ |
(3.28) |
It follows from (3.27) and (3.28) that
$\begin{equation*}
|\frac{h_{1}(z)-1}{h_{1}(z)+1}|\leqq \frac{\frac{n+1+\beta
n(n+1)+\gamma}{p-\beta
p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_{k}|}{2-2\sum\limits^{n}_{k=1}|a_{k}|-\frac{n+1+\beta
n(n+1)+\gamma}{p-\beta
p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_{k}|}\leqq
1\qquad(z\in \mathbb{U}),
\end{equation*}$ |
which shows that
$\begin{equation}\label{3.28}
\Re(h_{1}(z))\geqq 0\qquad(z\in \mathbb{U}).
\end{equation}$ |
(3.29) |
Combining (3.28) and (3.29), we deduce that the assertion (3.25) holds true.
Furthermore, if we put
$\begin{equation}\label{3.29}
f(z)= \frac{1}{z^{p}}-\frac{p-\beta p(p+1)-\gamma}{n+1+\beta
n(n+1)+\gamma}z^{n+1},
\end{equation}$ |
(3.30) |
then
$\begin{align}\begin{split}
\frac{f(z)}{f_{n}(z)}&=1-\frac{p-\beta p(p+1)-\gamma}{n+1+\beta n(n+1)+\gamma}z^{n+1+p}
\\&\rightarrow \frac{n+\beta n(n+1)+\beta p(p+1)-p+1+2\gamma}{n+\beta n(n+1)+1+\gamma}\qquad (z\rightarrow 1^{-}),
\end{split}\end{align}$ |
(3.31) |
which implies that the bound in (3.25) is the best possible for each $n\in \mathbb{N}.$
Similarly, we suppose that
$\begin{align}\begin{split}\label{3.30}
h_{2}(z) & =\frac{n+\beta n(n+1)+2-2\beta}{p-\beta p(p+1)-\gamma}\left(\frac{f_{n}(z)}{f(z)}-\frac{n+\beta n(n+1)+\beta p(p+1)-p+\gamma+2-2\beta}{n+\beta n(n+1)+2-2\beta}\right)\\
& =1-\frac{\frac{n+\beta n(n+1)+2-2\beta}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}a_{k}z^{k+p}}{1+\sum\limits^{\infty}_{k=1}a_{k}z^{k+p}}.
\end{split}\end{align}$ |
(3.32) |
In view of (3.27) and (3.32), we conclude that
$\begin{equation*}|\frac{h_{2}(z)-1}{h_{2}(z)+1}|\leqq \frac{\frac{n+\beta n(n+1)+2-2\beta}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_k|}
{2-2\sum\limits^{n}_{k=1}|a_k|-\frac{n+\beta n(n+1)+2\gamma+2\beta}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_k|}\leqq 1\qquad(z\in \mathbb{U}), \end{equation*}$ |
which implies that
$\begin{equation}\label{3.31}
\Re(h_{2}(z))\geqq 0\qquad(z\in \mathbb{U}).
\end{equation}$ |
(3.33) |
Combining (3.32) and (3.33), we readily get the assertion (3.26) of Theorem 3.4. The bound in (3.26) is sharp with the extremal function $f$ given by (3.30).
Finally, we prove the following inclusion relationship for the function class $\mathcal{H}_{p}(\beta,\lambda).$
Theorem 3.5 Let $\beta_{1}\geqq \beta_{2}\geqq
1$ and $ p-\frac{1}{2}\leqq \lambda_{1}\leqq \lambda_{2}<p.$ Then
$\mathcal{H}_{p}(\beta_{1},\lambda_{1})\subset \mathcal{H}_{p}(\beta_{2},\lambda_{2}).$ |
Proof Suppose that $f\in
\mathcal{H}_{p}(\beta_{1},\lambda_{1}).$ Then
$\Re\left(\frac{zf^{'}(z)}{f(z)}+\beta_{1}\frac{z^{2}f^{''}(z)}{f(z)}\right)<\lambda_{1}\left[\beta_{1}\left(\lambda_{1}+\frac{1}{2}\right)
-1\right]+\frac{p\beta_{1}}{2}\qquad(z\in \mathbb{U}).$ |
Since $\beta_{1}\geqq \beta_{2}\geqq 1$ and $p-\frac{1}{2}\leqq
\lambda_{1}\leqq \lambda_{2}<p,$ we find that
$\lambda_{1}\left[\beta_{1}\left(\lambda_{1}+\frac{1}{2}\right)-1\right]+\frac{p\beta_{1}}{2}\leqq \lambda_{2}\left[
\beta_{1}\left(\lambda_{2}+\frac{1}{2}\right)-1\right]+\frac{p\beta_{1}}{2}.$ |
Then we obtain
$\Re\left(\frac{zf^{'}(z)}{f(z)}+\beta_{1}\frac{z^{2}f^{''}(z)}{f(z)}\right)<\lambda_{2}\left[\beta_{1}\left(\lambda_{2}+\frac{1}{2}\right)
-1\right]+\frac{p\beta_{1}}{2}\qquad(z\in \mathbb{U}),$ |
which shows that $f\in \mathcal{H}_{p}(\beta_{1},\lambda_{2}).$ By Lemma 2.2, we see that $f\in \mathcal{MS}_{p}^{*}(\lambda_{2})$, that is
$\Re\left(\frac{zf^{'}(z)}{f(z)}\right)<-\lambda_{2}\qquad(z\in \mathbb{U}).$ |
Now, by setting $\delta=\frac{\beta_{2}}{\beta_{1}},$ so that $0<\delta\leqq 1,$ we easily find that
$\begin{align*}\begin{split}&\Re\left(\frac{zf^{'}(z)}{f(z)}+\beta_{2}\frac{z^{2}f^{''}(z)}{f(z)}-\lambda_{2}
\left[\beta_{2}\left(\lambda_{2}+\frac{1}{2}\right)-1\right]-\frac{p\beta_{2}}{2}\right)
\\=&\delta \Re\left(\frac{zf^{'}(z)}{f(z)}+\beta_{1}\frac{z^{2}f^{''}(z)}{f(z)}-\lambda_{2}\left[\beta_{1}\left(\lambda_{2}
+\frac{1}{2}\right)-1\right]-\frac{p\beta_{1}}{2}\right)
\\&+(1-\delta)\Re\left(\frac{zf^{'}(z)}{f(z)}+\lambda_{2}\right)<0\qquad(z\in\mathbb{U}),\end{split}
\end{align*}$ |
that is $f\in \mathcal{H}_{p}(\beta_{2},\lambda_{2})$. The proof of Theorem 3.5 is thus completed.