数学杂志  2015, Vol. 35 Issue (2): 327-336   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
ZHENG Ying-hui
SHI Lei
ON CERTAIN SUBCLASS OF MEROMORPHIC MULTIVALENT STARLIKE FUNCTIONS
ZHENG Ying-hui, SHI Lei    
School of Mathematics and Statistics, Anyang Normal University, Anyang 455002, China
Abstract: In this paper, we study a subclass Hp(β, λ) of meromorphic multivalent starlike functions. By using the analytical methods and techniques, we obtain the coefficient estimates, neighborhoods, partial sums and inclusion relationships of the class Hp(β, λ), which generalize the related works of some authors.
Key words: meromorphic functions     Hadamard product     neighborhoods     partial sums    
一类亚纯多叶星象函数的子族
郑颖慧, 石磊    
安阳师范学院数学与统计学院, 河南 安阳 455002
摘要:本文研究了一类亚纯多叶星象函数的子族Hp(β, λ).利用分析的方法与技巧, 得到了函数族Hp(β, λ)的系数估计、邻域与部分和性质及一些包含关系, 所得结果推广了相关作者的一些成果.
关键词亚纯函数    哈达玛卷积    邻域    部分和    
1 Introduction

Let $\Sigma_{p}$ denote the class of function $f$ of the form:

$\begin{equation}\label{1.1} f(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}a_{k}z^{k}, p\in \mathbb{N}=\{1,2,3,\cdots\}, \end{equation}$ (1.1)

which are analytic in the punctured open unit disk

$\mathbb{U}^{*}:=\{z:z\in \mathbb{C}\ {\rm and}\ 0<|z|<1 \}=:\mathbb{U}\setminus \{0\} . $

A function $f\in \Sigma_{p}$ is said to be in the class $ \mathcal{MS}_{p}^{*}(\alpha)$ of meromorphic $p$-valent starlike function of order $\alpha$ if it satisfies the inequality $\Re\left(\frac{zf'(z)}{f(z)}\right)<-\alpha(z\in\mathbb{U};\ 0\leqq\alpha<p). $

Let $\mathcal{P}$ denote the class of functions $p$ given by

$\begin{equation}\label{1.2} p(z)=1+\sum\limits^{\infty}_{k=1}p_{k}z^{k}(z\in \mathbb{U}), \end{equation}$ (1.2)

which are analytic in $\mathbb{U}$ and satisfy the condition $\Re\big(p(z)\big) >0(z\in \mathbb{U}).$

Given two functions $f,\ g\in\Sigma_{p}$, where $f$ is given by (1.1) and $g$ is given by

$g(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}b_{k}z^{k},$

the Hadamard product $f*g$ is defined by

$(f*g)(z):=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}a_{k}b_{k}z^{k}=:(g*f)(z).$

A functions $f\in \Sigma_{p}$ is said to be in the class $\mathcal{H}_{p}(\beta,\lambda)$ if it satisfies the condition

$\begin{equation}\label{1.3} \Re\left(\frac{zf'(z)}{f(z)}+\beta\frac{z^2f''(z)}{f(z)}\right)< \beta\lambda \left(\lambda+\frac{1}{2}\right)+\frac{1}{2}p\beta-\lambda\left(z\in\mathbb{U}\right), \end{equation}$ (1.3)

where (and throughout this paper unless otherwise mentioned) the parameters $\beta$ and $\lambda$ are constrained as follows:

$\begin{equation}\label{1.4} \beta\geqq 0\qquad {\rm and} \qquad p-\frac{1}{2}\leqq \lambda <p. \end{equation}$ (1.4)

Clearly, we have $\mathcal{H}_{p}(0,\lambda)=\mathcal{MS}_{p}^{*}(\lambda).$

2 Preliminary Results

In order to prove our main results, we need the following lemmas.

Lemma 2.1 (see [2]) If the function $p\in \mathcal{P}$ is given by (1.2), then $|p_{k}|\leqq 2(k\in \mathbb{N}).$

The following lemma shows that the class $\mathcal{H}_{p}(\beta,\lambda)$ is a subclass of the class $\mathcal{MS}_{p}^{*}(\lambda)$ of meromorphic $p$-valent starlike functions of order $\lambda.$

Lemma 2.2 (see [1]) If $f\in \mathcal{H}_{p}(\beta,\lambda)$, then $f\in \mathcal{MS}_{p}^{*}(\lambda)$.

Lemma 2.3 Let $\beta>0$ and $p-\beta p(p+1)-\gamma>0$. Suppose also that the sequence $\{A_{k}\}^{\infty}_{k=1}$ is defined by

$\begin{equation}\label{2.1} A_{1}=\frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1} ,\end{equation}$ (2.1)

and

$\begin{equation}\label{2.1111}A_{k+1}=\frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right)\qquad(k\in \mathbb{N}).\end{equation}$ (2.2)

Then

$\begin{equation}\label{2.2} A_{k}= \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1}\prod\limits^{k-1}_{j=1}\frac{3p-3\beta p(p+1)-2\gamma+(\beta j+1-\beta)j}{p-\beta p(p+1)+(\beta j+1)(j+1)} \qquad(k\in \mathbb{N}\setminus\{1\}). \end{equation}$ (2.3)

Proof By virtue of (2.1), we easily get

$\begin{equation}\label{2.3} [p-\beta p(p+1)+ (\beta k+1)(k+1)]A_{k+1}=2(p-\beta p(p+1)-\gamma)\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right), \end{equation}$ (2.4)

and

$\begin{equation}\label{2.4} [p-\beta p(p+1)+ (\beta k+1-\beta)k]A_{k}=2(p-\beta p(p+1)-\gamma)\left(1+\sum\limits^{k-1}_{l=1}|A_{l}|\right). \end{equation}$ (2.5)

Combining (2.4) and (2.5), we obtain

$\begin{equation}\label{2.5} \frac{A_{k+1}}{A_{k}}= \frac{3p-3\beta p(p+1)-2\gamma+(\beta k+1-\beta)k}{p-\beta p(p+1)+(\beta k+1)(k+1)}. \end{equation}$ (2.6)

Thus, for $k\geqq 2$, we deduce from (2.6) that

$\begin{align*}\begin{split}A_{k}&=\frac{A_{k}}{A_{k-1}}\cdots \frac{A_{3}}{A_{2}}\cdot\frac{A_{2}}{A_{1}}\cdot A_{1} \\&=\frac{2(p-\beta p(p+1)-\gamma)}{p-\beta p(p+1)+1}\prod^{k-1}_{j=1}\frac{3p-3\beta p(p+1)-2\gamma+(\beta j+1-\beta)j}{p-\beta p(p+1)+(\beta j+1)(j+1)}.\end{split}\end{align*}$
3 Properties of the Function Class $\mathcal{H}_{p}(\beta,\lambda)$

Theorem 3.1 Let

$\begin{equation}\label{3.1} p-\beta p(p+1)+\beta\lambda\left(\lambda+\frac{1}{2}\right)+ \frac{1}{2}p\beta-\lambda>0. \end{equation}$ (3.1)

Suppose also that $f\in \Sigma_{p}$ is given by (1.1). If

$\begin{equation}\label{3.2} \sum\limits^{\infty}_{k=1}[k+\beta k(k-1)+\gamma]|a_{k}|\leqq p-\beta p(p+1)-\gamma, \end{equation}$ (3.2)

where (and throughout this paper unless otherwise mentioned) the parameter $\gamma$ is constrained as follows:

$\begin{equation}\label{3.3} \gamma:=\lambda-\beta\lambda\left(\lambda+\frac{1}{2}\right)-\frac{1}{2}p\beta, \end{equation}$ (3.3)

then $f\in \mathcal{H}_{p}(\beta,\lambda)$.

Proof To prove $f\in \mathcal{H}_{p}(\beta,\lambda)$, it suffices to show that

$\begin{equation}\label{3.4} \left| \frac{\frac{zf^{'}(z)}{f(z)}+\beta\frac{z^{2}f^{''}(z)}{f(z)} +1}{\frac{zf^{'}(z)}{f(z)}+\beta\frac{z^{2}f^{''}(z)}{f(z)} +2\gamma-1}\right|<1\qquad(z\in \mathbb{U}). \end{equation}$ (3.4)

Combining (3.1), (3.2) and (3.3), we know that

$\begin{align}\label{3.5}& p-\beta p(p+1)-2\gamma+1- \sum\limits^{\infty}_{k=1}[k+\beta k(k-1)+2\gamma-1]|a_{k}|\\\notag \geqq &1-p+\beta p(p+1)+ \sum\limits^{\infty}_{k=1}[k+1+\beta k(k-1)]|a_{k}|>0.\end{align}$ (3.5)

Now, by the maximum modulus principle, we deduce from (1.1) and (3.5) that

$\begin{align*} &\left| \frac{\frac{zf^{'}(z)}{f(z)}+\beta\frac{z^{2}f^{''}(z)}{f(z)} +1}{\frac{zf^{'}(z)}{f(z)}+\beta\frac{z^{2}f^{''}(z)}{f(z)}+ 2\gamma-1}\right| \\ =&\left| \frac{1-p+\beta p(p+1)+ \sum^{\infty}_{k=1}[k+1+\beta k(k-1)]a_{k}z^{k+p}}{ -p+\beta p(p+1)+2\gamma-1+ \sum^{\infty}_{k=1}[k+\beta k(k-1)+2\gamma-1]a_{k}z^{k+p}} \right|\\ <&\frac{1-p+\beta p(p+1)+ \sum^{\infty}_{k=1}[k+1+\beta k(k-1)]|a_{k}|}{ p-\beta p(p+1)-2\gamma+1- \sum^{\infty}_{k=1}[k+\beta k(k-1)+2\gamma-1]|a_{k}|}\\ \leqq &1. \end{align*}$

Theorem 3.2 Let $\gamma$ be defined by (3.3). If $f\in \mathcal{H}_{p}(\beta,\lambda)$ with $0<\beta<\frac{p-\lambda}{p(p+1)}$, then

$|a_{1}|\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1},$

and

$|a_{k}|\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1}\prod\limits^{k-1}_{j=1}\frac{3p-3\beta p(p+1)-2\gamma+(\beta j+1-\beta)j}{p-\beta p(p+1)+(\beta j+1)(j+1)} \qquad(k\in \mathbb{N}\setminus\{1\}).$

Proof Suppose that

$\begin{equation}\label{3.6} q(z):=-\frac{zf^{'}(z)}{f(z)}-\beta\frac{z^{2}f^{''}(z)}{f(z)}+\beta\lambda(\lambda+\frac{1}{2})+\frac{1}{2}p\beta-\lambda . \end{equation}$ (3.6)

Then, $q$ is analytic in $\mathbb{U}$ and $\Re\left(q(z)\right)>0(z\in\mathbb{U})$ with $q(0)=p-\beta p(p+1)-\gamma>0.$ It follows from (3.3) and (3.6) that

$\begin{equation}\label{3.7} q(z)f(z)=-zf^{'}(z)-\beta z^{2}f^{''}(z)-\gamma f(z). \end{equation}$ (3.7)

By noting that

$h(z)=\frac{q(z)}{p-\beta p(p+1)-\gamma}\in \mathcal{P},$

if we put

$q(z)=c_{0}+\sum\limits^{\infty}_{k=1}c_{k}z^{k}\qquad (c_{0}=p-\beta p(p+1)-\gamma).$

by Lemma 2.1, we know that $|c_{k}|\leqq 2[p-\beta p(p+1)-\gamma](k\in \mathbb{N}).$ It follows from (3.7) that

$\begin{align}\begin{split}\label{3.8} &\left(c_{0}+\sum\limits^{\infty}_{k=1}c_{k}z^{k}\right)\left(\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}a_{k}z^{k}\right) \\=&\left(\frac{p}{z^{p}}-\sum\limits^{\infty}_{k=1}ka_{k}z^{k}\right)-\left[\beta\frac{p(p+1)}{z^{p}}+\beta\sum\limits^{\infty}_{k=1}k(k-1)a_{k}z^{k}\right] -\gamma\left(\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}a_{k}z^{k}\right). \end{split}\end{align}$ (3.8)

In view of (3.8), we get

$\begin{equation}\label{3.9} c_{0}a_{1}+c_{p+1}=-a_{1}-\gamma a_{1}, \end{equation}$ (3.9)

and

$\begin{equation}\label{3.10} c_{0}a_{k+1}+c_{p+k+1}+\sum\limits^{k}_{l=1}a_{l}c_{k+1-l}=-(k+1)a_{k+1}-\beta k(k+1)a_{k+1}-\gamma a_{k+1}. \end{equation}$ (3.10)

From (3.9), we obtain

$\begin{equation}\label{3.11} |a_{1}|\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1}, \end{equation}$ (3.11)

and

$\begin{equation}\label{3.12} |a_{k+1}|\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right)\qquad(k\in \mathbb{N}). \end{equation}$ (3.12)

Next, we define the sequence $\{A_{k}\}^{\infty}_{k=1}$ as follows

$\begin{equation}\label{3.13} A_{1}=\frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1},\end{equation}$ (3.13)

and

$\begin{equation}A_{k+1}=\frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right)\qquad(k\in \mathbb{N}).\end{equation}$ (3.14)

In order to prove that

$ |a_{k}|\leqq |A_{k}|\qquad(k\in \mathbb{N}) ,$

we make use of the principle of mathematical induction. By noting that

$|a_{1}|\leqq | A_{1}|=\frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+1}.$

Therefore, assuming that

$|a_{l}|\leqq | A_{l}|\qquad(l=1,2,3,\cdots,k;\ k\in \mathbb{N}).$

Combining (3.12) and (3.13), we get

$\begin{align*} |a_{k+1}|&\leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|a_{l}|\right)\\ & \leqq \frac{2[p-\beta p(p+1)-\gamma]}{p-\beta p(p+1)+ (\beta k+1)(k+1)}\left(1+\sum\limits^{k}_{l=1}|A_{l}|\right)\\ &=A_{k+1}\qquad(k\in \mathbb{N}). \end{align*}$

Hence, by the principle of mathematical induction, we have

$\begin{equation}\label{3.14} |a_{k}|\leqq | A_{k}|\qquad(k\in \mathbb{N}) \end{equation}$ (3.15)

as desired.

By means of Lemma 2.3 and (3.13), we know that (2.3) holds true. Combining (3.15) and (2.3), we readily get the coefficient estimates asserted by Theorem 3.2. Assuming that $\gamma$ is given by (3.3) and that the condition (3.1) holds true, we here introduce the $\delta$-neighborhood of a function $ f\in\Sigma_{p}$ of the form (1.1) by means of the following definition:

$\begin{align}\label{3.15} \mathcal{N}_{\delta}(f):=\left\{g\in\Sigma_{p}: g(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}b_{k}z^{k}\ {\rm and} \ \sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}|a_{k}-b_{k}|\leqq\delta \right\}, \end{align}$ (3.16)

where $\delta\geqq0$.

Theorem 3.3 Let the condition (3.1) hold true. If $ f\in\Sigma_{p}$ satisfies the condition

$\begin{equation}\label{3.16} \frac{f(z)+\varepsilon z^{-p}}{1+\varepsilon} \in \mathcal{H}_{p}(\beta,\lambda)\qquad(\varepsilon \in \mathbb{C};\ |\varepsilon|<\delta;\ \delta>0), \end{equation}$ (3.17)

then

$\begin{equation}\label{3.17} \mathcal{N}_{\delta}(f)\subset \mathcal{H}_{p}(\beta,\lambda). \end{equation}$ (3.18)

Proof By noting that the condition (1.3) is equivalent to (3.4), we easily find from (3.4) that a function $g\in \mathcal{H}_{p}(\beta,\lambda)$ if and only if

$ \frac{zg^{'}(z)+\beta z^{2}g^{''}(z)+g(z)}{zg^{'}(z)+\beta z^{2}g^{''}(z)+(2\gamma-1)g(z)} \neq \sigma\qquad(z\in \mathbb{U};\ \sigma\in\mathbb{C};\ |\sigma|=1),$

which is equivalent to

$\begin{equation}\label{3.18} \frac{(g*\mathfrak{h})(z)}{z^{-p}}\neq 0\qquad(z\in \mathbb{U}), \end{equation}$ (3.19)

where

$\begin{equation}\label{3.19} \mathfrak{h}(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}c_{k}z^{k} \left(c_{k}:=\frac{k+\beta k(k-1)+1-[k+\beta k(k-1)+(2\gamma-1)]\sigma}{-p+\beta p(p+1)+1+[p-\beta p(p+1)-(2\gamma-1)]\sigma}\right). \end{equation}$ (3.20)

It follows from (3.20) that

$\begin{align*} |c_{k}| &= \left| \frac{k+\beta k(k-1)+1-[k+\beta k(k-1)+(2\gamma-1)]\sigma}{-p+\beta p(p+1)+1+[p-\beta p(p+1)-(2\gamma-1)]\sigma}\right| \\ & \leqq \frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}\qquad(|\sigma|=1). \end{align*}$

If $ f\in\Sigma_{p}$ given by (1.1) satisfies the condition (3.17), we deduce from (3.19) that

$ \frac{(f*\mathfrak{h})(z)}{z^{-p}}\neq -\varepsilon\qquad(|\varepsilon|<\delta;\ \delta>0) ,$

or equivalently,

$\begin{equation}\label{3.20} |\frac{(f*\mathfrak{h})(z)}{z^{-p}}|\geqq \delta\qquad(z\in \mathbb{U};\delta>0). \end{equation}$ (3.21)

We now suppose that

$q(z)=\frac{1}{z^{p}}+\sum\limits^{\infty}_{k=1}d_{k}z^{k}\in \mathcal{N}_{\delta}(f).$

It follows from (3.16) that

$\begin{equation}\label{3.21} \left|\frac{[(q-f)*\mathfrak{h}])(z)}{z^{-p}} \right|=\left|\sum\limits^{\infty}_{k=1}(d_{k}-a_{k})c_{k}z^{k+p}\right| \leqq |z|\sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}|d_{k}-a_{k}|<\delta. \end{equation}$ (3.22)

Combining (3.21) and (3.22), we easily find that

$|\frac{(q*\mathfrak{h})(z)}{z^{-p}}|=|\frac{([f+(q-f)]*\mathfrak{h})(z)}{z^{-p}}|\geqq |\frac{(f*\mathfrak{h})(z)}{z^{-p}}|-|\frac{[(q-f)*\mathfrak{h}](z)}{z^{-p}}|>0,$

which implies that

$\frac{(q*\mathfrak{h})(z)}{z^{-p}}\neq 0\qquad(z\in \mathbb{U}).$

Therefore, we have

$q(z)\in \mathcal{N}_{\delta}(f)\subset \mathcal{H}_{p}(\beta,\lambda).$

Next, we derive the partial sums of the class $\mathcal{H}_{p}(\beta,\lambda)$. For some recent investigations involving the partial sums in analytic function theory, one can refer to [3-7].

Theorem 3.4 Let $ f\in\Sigma_{p}$ be given by (1.1) and define the partial sums $f_{n}(z)$ of $f$ by

$\begin{equation}\label{3.22} f_{n}(z)=\frac{1}{z^{p}}+\sum\limits^{n}_{k=1}a_{k}z^{k} (n\in \mathbb{N}). \end{equation}$ (3.23)

If

$\begin{equation}\label{3.23} \sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}|a_{k}|\leqq 1, \end{equation}$ (3.24)

where $\gamma$ given by (3.3) and the condition (3.1) holds true, then

(ⅰ) $ f\in \mathcal{H}_{p}(\beta,\lambda);$

(ⅱ)

$\begin{equation}\label{3.24} \Re\left(\frac{f(z)}{f_n(z)}\right)\geqq \frac{n+\beta n(n+1)+\beta p(p+1)-p+1+2\gamma}{n+\beta n(n+1)+1+\gamma}\qquad(n\in \mathbb{N};z\in \mathbb{U}), \end{equation}$ (3.25)

and

$\begin{equation}\label{3.25} \Re\left(\frac{f_n(z)}{f(z)}\right)\geqq \frac{n+\beta n(n+1)+\beta p(p+1)-p+2+\gamma-2\beta}{n+\beta n(n+1)+2-2\beta}\qquad(n\in \mathbb{N};z\in \mathbb{U}). \end{equation}$ (3.26)

The bounds in (3.25) and (3.26) are sharp.

Proof First of all, we suppose that $f_{1}(z)=\frac{1}{z^{p}}.$ We know that

$\frac{f(z)+\varepsilon z^{-p}}{1+\varepsilon}= \frac{1}{z^{p}}\in \mathcal{H}_{p}(\beta,\lambda).$

From (3.24), we easily find that

$ \sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}|a_{k}-0|\leqq 1,$

which implies that $f\in N_{1}(z^{-p})$. By virtue of Theorem 3.3, we deduce that

$f\in \mathcal{N}_{1}(z^{-p})\subset \mathcal{H}_{p}(\beta,\lambda).$

Next, it is easy to see that

$\frac{n+1+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}>\frac{n+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}>1\qquad(n\in \mathbb{N}). $

Therefore, we have

$\begin{equation}\label{3.26} \sum\limits^{n}_{k=1}|a_{k}|+\frac{n+1+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_{k}|\leqq \sum\limits^{\infty}_{k=1}\frac{k+\beta k(k-1)+\gamma}{p-\beta p(p+1)-\gamma}|a_{k}|\leqq 1. \end{equation}$ (3.27)

We now suppose that

$\begin{align}\begin{split}\label{3.27} h_{1}(z) & =\frac{n+1+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}\left(\frac{f(z)}{f_{n}(z)}-\frac{n+\beta n(n+1)+\beta p(p+1)-p+1+2\gamma}{n+1+\beta n(n+1)+\gamma}\right) \\& =1+\frac{\frac{n+1+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}a_{k}z^{k+p}}{1+\sum\limits^{n}_{k=1}a_{k}z^{k+p}}. \end{split}\end{align}$ (3.28)

It follows from (3.27) and (3.28) that

$\begin{equation*} |\frac{h_{1}(z)-1}{h_{1}(z)+1}|\leqq \frac{\frac{n+1+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_{k}|}{2-2\sum\limits^{n}_{k=1}|a_{k}|-\frac{n+1+\beta n(n+1)+\gamma}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_{k}|}\leqq 1\qquad(z\in \mathbb{U}), \end{equation*}$

which shows that

$\begin{equation}\label{3.28} \Re(h_{1}(z))\geqq 0\qquad(z\in \mathbb{U}). \end{equation}$ (3.29)

Combining (3.28) and (3.29), we deduce that the assertion (3.25) holds true.

Furthermore, if we put

$\begin{equation}\label{3.29} f(z)= \frac{1}{z^{p}}-\frac{p-\beta p(p+1)-\gamma}{n+1+\beta n(n+1)+\gamma}z^{n+1}, \end{equation}$ (3.30)

then

$\begin{align}\begin{split} \frac{f(z)}{f_{n}(z)}&=1-\frac{p-\beta p(p+1)-\gamma}{n+1+\beta n(n+1)+\gamma}z^{n+1+p} \\&\rightarrow \frac{n+\beta n(n+1)+\beta p(p+1)-p+1+2\gamma}{n+\beta n(n+1)+1+\gamma}\qquad (z\rightarrow 1^{-}), \end{split}\end{align}$ (3.31)

which implies that the bound in (3.25) is the best possible for each $n\in \mathbb{N}.$

Similarly, we suppose that

$\begin{align}\begin{split}\label{3.30} h_{2}(z) & =\frac{n+\beta n(n+1)+2-2\beta}{p-\beta p(p+1)-\gamma}\left(\frac{f_{n}(z)}{f(z)}-\frac{n+\beta n(n+1)+\beta p(p+1)-p+\gamma+2-2\beta}{n+\beta n(n+1)+2-2\beta}\right)\\ & =1-\frac{\frac{n+\beta n(n+1)+2-2\beta}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}a_{k}z^{k+p}}{1+\sum\limits^{\infty}_{k=1}a_{k}z^{k+p}}. \end{split}\end{align}$ (3.32)

In view of (3.27) and (3.32), we conclude that

$\begin{equation*}|\frac{h_{2}(z)-1}{h_{2}(z)+1}|\leqq \frac{\frac{n+\beta n(n+1)+2-2\beta}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_k|} {2-2\sum\limits^{n}_{k=1}|a_k|-\frac{n+\beta n(n+1)+2\gamma+2\beta}{p-\beta p(p+1)-\gamma}\sum\limits^{\infty}_{k=n+1}|a_k|}\leqq 1\qquad(z\in \mathbb{U}), \end{equation*}$

which implies that

$\begin{equation}\label{3.31} \Re(h_{2}(z))\geqq 0\qquad(z\in \mathbb{U}). \end{equation}$ (3.33)

Combining (3.32) and (3.33), we readily get the assertion (3.26) of Theorem 3.4. The bound in (3.26) is sharp with the extremal function $f$ given by (3.30).

Finally, we prove the following inclusion relationship for the function class $\mathcal{H}_{p}(\beta,\lambda).$

Theorem 3.5 Let $\beta_{1}\geqq \beta_{2}\geqq 1$ and $ p-\frac{1}{2}\leqq \lambda_{1}\leqq \lambda_{2}<p.$ Then

$\mathcal{H}_{p}(\beta_{1},\lambda_{1})\subset \mathcal{H}_{p}(\beta_{2},\lambda_{2}).$

Proof Suppose that $f\in \mathcal{H}_{p}(\beta_{1},\lambda_{1}).$ Then

$\Re\left(\frac{zf^{'}(z)}{f(z)}+\beta_{1}\frac{z^{2}f^{''}(z)}{f(z)}\right)<\lambda_{1}\left[\beta_{1}\left(\lambda_{1}+\frac{1}{2}\right) -1\right]+\frac{p\beta_{1}}{2}\qquad(z\in \mathbb{U}).$

Since $\beta_{1}\geqq \beta_{2}\geqq 1$ and $p-\frac{1}{2}\leqq \lambda_{1}\leqq \lambda_{2}<p,$ we find that

$\lambda_{1}\left[\beta_{1}\left(\lambda_{1}+\frac{1}{2}\right)-1\right]+\frac{p\beta_{1}}{2}\leqq \lambda_{2}\left[ \beta_{1}\left(\lambda_{2}+\frac{1}{2}\right)-1\right]+\frac{p\beta_{1}}{2}.$

Then we obtain

$\Re\left(\frac{zf^{'}(z)}{f(z)}+\beta_{1}\frac{z^{2}f^{''}(z)}{f(z)}\right)<\lambda_{2}\left[\beta_{1}\left(\lambda_{2}+\frac{1}{2}\right) -1\right]+\frac{p\beta_{1}}{2}\qquad(z\in \mathbb{U}),$

which shows that $f\in \mathcal{H}_{p}(\beta_{1},\lambda_{2}).$ By Lemma 2.2, we see that $f\in \mathcal{MS}_{p}^{*}(\lambda_{2})$, that is

$\Re\left(\frac{zf^{'}(z)}{f(z)}\right)<-\lambda_{2}\qquad(z\in \mathbb{U}).$

Now, by setting $\delta=\frac{\beta_{2}}{\beta_{1}},$ so that $0<\delta\leqq 1,$ we easily find that

$\begin{align*}\begin{split}&\Re\left(\frac{zf^{'}(z)}{f(z)}+\beta_{2}\frac{z^{2}f^{''}(z)}{f(z)}-\lambda_{2} \left[\beta_{2}\left(\lambda_{2}+\frac{1}{2}\right)-1\right]-\frac{p\beta_{2}}{2}\right) \\=&\delta \Re\left(\frac{zf^{'}(z)}{f(z)}+\beta_{1}\frac{z^{2}f^{''}(z)}{f(z)}-\lambda_{2}\left[\beta_{1}\left(\lambda_{2} +\frac{1}{2}\right)-1\right]-\frac{p\beta_{1}}{2}\right) \\&+(1-\delta)\Re\left(\frac{zf^{'}(z)}{f(z)}+\lambda_{2}\right)<0\qquad(z\in\mathbb{U}),\end{split} \end{align*}$

that is $f\in \mathcal{H}_{p}(\beta_{2},\lambda_{2})$. The proof of Theorem 3.5 is thus completed.

References
[1] Wang Zhigang, Liu Zhihong, Xiang Riguang. Some criteria for meromorphic multivalent starlike functions[J]. Appl. Math. Computation, 2011, 218(3): 1107–1111. DOI:10.1016/j.amc.2011.03.079
[2] Goodman A W. Univalent functions[M]. Tampa Florida: Mariner publishing Company Inc., 1983.
[3] Aouf M K, Mostafa A O. On partial sums of certain meromorphic $p$-valent functions[J]. Mathematical and Computer Modelling, 2009, 50(9-10): 1325–1331. DOI:10.1016/j.mcm.2008.08.025
[4] Frasin B A. Generalization of partial sums of certain analytic and univalent functions[J]. Applied Mathematics Letters, 2008, 21(7): 735–741. DOI:10.1016/j.aml.2007.08.002
[5] Liu Jinlin, Srivastava H M. Classes of meromorphically multivalent functions associated with the generalized hypergeomemetric function[J]. Mathematical and Computer Modelling, 2004, 39(1): 21–34. DOI:10.1016/S0895-7177(04)90503-1
[6] Liu Jinlin, Srivastava H M. Subclasses of meromorphically multivalent functions associated with a certain linear poerator[J]. Mathematical and Computer Modelling, 2004, 39(1): 35–44. DOI:10.1016/S0895-7177(04)90504-3
[7] Wang Zhigang, Srivastava H M, Yuan Shaomou. Some basic properties of certain subclasses of meromorphically starlike functions[J]. preprint.